相关习题
 0  229110  229118  229124  229128  229134  229136  229140  229146  229148  229154  229160  229164  229166  229170  229176  229178  229184  229188  229190  229194  229196  229200  229202  229204  229205  229206  229208  229209  229210  229212  229214  229218  229220  229224  229226  229230  229236  229238  229244  229248  229250  229254  229260  229266  229268  229274  229278  229280  229286  229290  229296  229304  266669 

科目: 来源: 题型:解答题

7.某医学院读书协会研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图的频数分布直方图:
该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)已知选取的是1月与6月的两组数据:
(i)请根据2至5月份的数据,求出就诊人数y关于昼夜温差x的线性回归方程;
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目: 来源: 题型:选择题

6.某程序框图如图所示,其中t∈Z,该程序运行后输出的k=4,则t的最大值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知函数f(x)=${∫}_{0}^{x}$(-3x2+3f′(2))dx,则f′(2)=6.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知a、b、c分别为△ABC的三个内角A、B、C的对边,若a=$\sqrt{6}$,b=2,B=45°,则角A等于(  )
A.60°B.120°C.60°或120°D.30°

查看答案和解析>>

科目: 来源: 题型:填空题

3.执行如图所示的程序框图,若输出的T=20,则循环体的判断框内应填入的条件是(填相应编号)②.
(①T≥S;②T>S;③T≤S;④T<S)

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知抛物线x2=2py(p>0)的顶点到焦点的距离为1,过点P(0,p)作直线与抛物线交于A(x1,y1),
B(x2,y2)两点,其中x1>x2
(1)若直线AB的斜率为$\frac{1}{2}$,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程;
(2)若$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,是否存在异于点P的点Q,使得对任意λ,都有$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-λ$\overrightarrow{QB}$),若存在,求Q点坐标;不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知抛物线C:y2=2px(p>0)上的一点M(3,t)到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点T(-2,0)的直线l与抛物线C交于A,B两点,若在x轴上存在一点E,使得△EAB是以点E为直角顶点的直角三角形,求直线l的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点Q($\sqrt{2}$,1),右焦点F($\sqrt{2}$,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=k(x-1)(k>0)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值,并求出弦长|MN|.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点Q($\sqrt{2}$,1),右焦点F($\sqrt{2}$,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=k(x-1)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值;
(Ⅲ)自椭圆C上异于其顶点的任意一点P,作圆O:x2+y2=2的两条切线切点分别为P1,P2,若直线P1P2在x轴,y轴上的截距分别为m,n,证明:$\frac{1}{m^2}+\frac{2}{n^2}$=1.

查看答案和解析>>

科目: 来源: 题型:解答题

18.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为Q,O为坐标原点,过OQ的中点作x轴的垂线与椭圆在第一象限交于点A,点A的纵坐标为$\frac{3}{2}$c,c为半焦距.
(1)求椭圆的离心率;
(2)过点A斜率为$\frac{1}{2}$的直线l与椭圆交于另一点B,以AB为直径的圆过点P($\frac{1}{2}$,$\frac{9}{2}$),求椭圆方程.

查看答案和解析>>

同步练习册答案