相关习题
 0  229134  229142  229148  229152  229158  229160  229164  229170  229172  229178  229184  229188  229190  229194  229200  229202  229208  229212  229214  229218  229220  229224  229226  229228  229229  229230  229232  229233  229234  229236  229238  229242  229244  229248  229250  229254  229260  229262  229268  229272  229274  229278  229284  229290  229292  229298  229302  229304  229310  229314  229320  229328  266669 

科目: 来源: 题型:填空题

19.已知椭圆E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为(2,-1),则E的离心率e=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点F(c,0)的直线l与C相交于A、B两点,l交y轴于E点,C的离心率e=$\frac{\sqrt{2}}{2}$.当直线l斜率为1时,点(0,b)到l的距离为$\sqrt{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若M(t,0)满足:$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\overrightarrow{MF}$•$\overrightarrow{ME}$,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

17.△ABC中,若sinC=(${\sqrt{3}$cosA+sinA)cosB,则(  )
A.B=$\frac{π}{3}$B.2b=a+c
C.△ABC是直角三角形D.a2=b2+c2或2B=A+C

查看答案和解析>>

科目: 来源: 题型:选择题

16.△ABC的三个内角A,B,C所对的边分别为a,b,c,若${B}=\frac{π}{3}$,a=1,$b=\sqrt{3}$,则A=(  )
A.150°B.30°C.60°D.120°

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0),B(2,0),C(1,$\frac{3}{2}$).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设经过D(1,0)点的直线l交椭圆异于A、B的两点M,N,试证明直线AM与BN的交点在一条定直线上,并求出该直线的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

14.若一个长方体共顶点的三个面的对角线长分别是a,b,c,则长方体的对角线长是(  )
A.$\sqrt{{a^2}+{b^2}+{c^2}}$B.$\sqrt{\frac{{{a^2}+{b^2}+{c^2}}}{2}}$C.$\sqrt{ab+bc+ac}$D.$\sqrt{\frac{3(2b+bc+ac)}{2}}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1,点M(x0,y0)是椭圆C上的一点,圆M(x-x02+(y-y02=r2
(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;
(2)从原点O向圆M:(x-x02+(y-y02=$\frac{4}{5}$作两条切线与椭圆C交于P,Q两点(P,Q不在坐标轴上),设OP,OQ的斜率分别为k1,k2
①试问k1,k2是否为定值?若是,求出这个定值;若不是说明理由;
②求|OP|•|OQ|的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与双曲线$\frac{x^2}{2}-{y^2}$=1有共同的焦点,抛物线x2=4y的焦点为椭圆C的一个顶点.
(1)求椭圆C的标准方程;
(2)若点M(x0,y0)在椭圆C上,则点$N(\frac{x_0}{a},\frac{y_0}{b})$称为点M的一个“椭点”.直线l与椭圆C交于不同的两点A,B,且A,B两点的“椭点”分别为P,Q.
(i)若直线l的方程为y=x,求P,Q两点的坐标;
(ii)若以PQ为直径的圆经过坐标原点O,那么△AOB的面积是否为定值?若是定值,试求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在平面直角坐标系中:已知曲线C:$\frac{y^2}{4}+{x^2}$=1(x≥0).
(1)求曲线C的参数方程;
(2)曲线C上任意点P(除短轴端点外)与短轴两个端点B1,B2连线分别为与x轴交于M,N两点,O为坐标原点,求证:|OM|•|ON|为定值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.函数f(x)=sin2x-cos(2x+$\frac{π}{6}$)的值域为[$-\sqrt{3},\sqrt{3}$],最小正周期为π,单调递减区间是[$\frac{π}{3}+kπ,\frac{5π}{6}+kπ$],k∈Z.

查看答案和解析>>

同步练习册答案