相关习题
 0  229198  229206  229212  229216  229222  229224  229228  229234  229236  229242  229248  229252  229254  229258  229264  229266  229272  229276  229278  229282  229284  229288  229290  229292  229293  229294  229296  229297  229298  229300  229302  229306  229308  229312  229314  229318  229324  229326  229332  229336  229338  229342  229348  229354  229356  229362  229366  229368  229374  229378  229384  229392  266669 

科目: 来源: 题型:选择题

11.与-527°角终边相同的角的集合是(  )
A.{α|α=k?360°+527°,k∈Z}B.{ α|α=k?360°+157°,k∈Z }
C.{α|α=k?360°+193°,k∈Z }D.{ α|α=k?360°-193°,k∈Z }

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知关于x的方程2x2-($\sqrt{3}$+1)x+2m=0的两根为sinθ和cosθ(θ∈(0,π)),求:
(1)m的值.
(2)$\frac{sinθ}{1-cotθ}+\frac{cosθ}{1-tanθ}$的值(其中cotθ=$\frac{1}{tanθ}$).
(3)方程的两根及此时θ的值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知f(x)=x(2013+lnx),f′(x0)=2 014,则x0等于(  )
A.e2B.1C.ln2D.e

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=1+2sin(2x-$\frac{π}{3}$).
(1)用五点法作图作出f(x)在x∈[0,$\frac{π}{2}$]的图象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.(1)化简:f(α)=$\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$;
(2)求值:$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

科目: 来源: 题型:选择题

6.y=sin(x-$\frac{π}{4}$)的图象的一个对称中心是(  )
A.(-π,0)B.($\frac{π}{2}$,0)C.($\frac{3π}{2}$,0)D.(-$\frac{3π}{4}$,0)

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知扇形的半径为2cm,扇形圆心角θ的弧度数是2,则扇形的弧长为(  )
A.2cmB.4cmC.6cmD.8cm

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图所示,执行程序框图输出的结果是(  )
A.$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{11}$B.$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{22}$C.$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{10}$D.$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$

查看答案和解析>>

科目: 来源: 题型:填空题

3.设i为虚数单位,复数z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)为纯虚数,则a的值为-1.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x+a的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0,$\frac{π}{2}$]上有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案