相关习题
 0  229203  229211  229217  229221  229227  229229  229233  229239  229241  229247  229253  229257  229259  229263  229269  229271  229277  229281  229283  229287  229289  229293  229295  229297  229298  229299  229301  229302  229303  229305  229307  229311  229313  229317  229319  229323  229329  229331  229337  229341  229343  229347  229353  229359  229361  229367  229371  229373  229379  229383  229389  229397  266669 

科目: 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边为a,b,c.已知2acosB=$\sqrt{3}$(bcosC+ccosB).
(Ⅰ)求B的值;
(Ⅱ)若c=$\sqrt{3}$b,△ABC的面积为2$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.为分析肥胖程度对总胆固醇与空腹血糖的影响,在肥胖人群中随机抽出8人,他们的肥胖指数BMI值、总胆固醇TC指标(单位:mmol/L)、空腹血糖CLU指标值(单位:mmol/L)如表所示.
人员编号12345678
BMI值x2527303233354042
TC指标值y5.35.45.55.65.76.56.97.1
CLU指标值z6.77.27.38.08.18.69.09.1
(1)用变量y与x,z与x的相关系数,分别说明TC指标值与BMI值、CLU指标值与BMI值的相关程度;
(2)求y与x的线性回归方程,已知TC指标值超过5.2为总胆固醇偏高,据此模型分析当BMI值达到多大时,需要注意监控总胆固醇偏高情况的出现(上述数据均要精确到0.01).
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回归直线y=$\stackrel{∧}{b}$x+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$
参考数据:$\overline{x}$=33,$\overline{y}$=6,$\overline{z}$=8,$\sum_{i=1}^{8}({x}_{i}-\overline{x})^{2}$≈244,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈3.6,$\sum_{i=1}^{8}({z}_{i}-\overline{z})^{2}$≈5.4,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$≈28.3,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({z}_{i}-\overline{z})$≈35.4,$\sqrt{244}$≈15.6,$\sqrt{3.6}$≈1.9,$\sqrt{5.4}$≈2.3.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设函数f(x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取得最小值,且满足cos2C-cos2A=2sin($\frac{π}{3}$+C)sin($\frac{π}{3}$-C).
(1)求φ的值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=$\sqrt{2}$,f(A)=$\frac{{\sqrt{3}}}{2}$,求角C.

查看答案和解析>>

科目: 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知A=30°,B=45°,a=$\sqrt{2}$.
(1)求b的长;
(2)求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

17.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=$\frac{1}{3}$,则sinA=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.设a,b,c为三角形ABC三边长,a≠1,b<c,若$\sqrt{3}$sinA+cosA=$\sqrt{2}$,且$\frac{1}{lo{g}_{c-b}a}$+$\frac{1}{lo{g}_{c+b}a}$=2,则B角大小为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对边长分别是a,b,c,已知c=2,C=$\frac{π}{3}$.
(1)若△ABC的面积等于$\sqrt{3}$,求a,b;
(2)求$\frac{b}{2}$+a的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设a,b,c为△ABC的三边长,若c2=a2+b2,且$\sqrt{3}$sinA+cosA=$\sqrt{2}$,则∠B的大小为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.(1)计算:sin6°sin42°sin66°sin78°
(2)已知α为第二象限角,且sinα=$\frac{\sqrt{15}}{4}$,求$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知tan($\frac{π}{4}$+α)=3,计算:
(1)tanα;  
(2)tan2α;       
(3)$\frac{2sinαcosα+3cos2α}{5cos2α-3sin2α}$.

查看答案和解析>>

同步练习册答案