相关习题
 0  229253  229261  229267  229271  229277  229279  229283  229289  229291  229297  229303  229307  229309  229313  229319  229321  229327  229331  229333  229337  229339  229343  229345  229347  229348  229349  229351  229352  229353  229355  229357  229361  229363  229367  229369  229373  229379  229381  229387  229391  229393  229397  229403  229409  229411  229417  229421  229423  229429  229433  229439  229447  266669 

科目: 来源: 题型:选择题

11.下面几种推理过程是演绎推理的是(  )
A.某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人
B.根据三角形的性质,可以推测空间四面体的性质
C.平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分
D.在数列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$,n∈N*,计算a2,a3,由此归纳出{an}的通项公式

查看答案和解析>>

科目: 来源: 题型:填空题

10.计算:$\lim_{n→+∞}\frac{{{n^2}(n+6)}}{{12{n^3}+7}}$=$\frac{1}{12}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=x2-4lnx
(1)求函数f(x)的单调区间;
(2)若函数g(x)=$\frac{f(x)}{2}$+3lnx-ax(a>0),证明:函数g(x)有且仅有1个零点.

查看答案和解析>>

科目: 来源: 题型:选择题

8.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足$\frac{a}{7}$=$\frac{b}{4}$=$\frac{c}{5}$,则$\frac{sin2A}{sinB+sinC}$=(  )
A.$-\frac{11}{14}$B.$\frac{12}{7}$C.$-\frac{14}{45}$D.$-\frac{11}{24}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.设函数f(x)=$\frac{1}{2}$x2-mlnx,g(x)=x2-(m+1)x
(1)求函数f(x)的单调区间;
(2)当m≥0时,讨论函数f(x)与g(x)图象的交点个数.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$,x∈R,则函数f(x)的最小值为-2,函数f(x)的递增区间为[$-\frac{π}{6}+kπ,\frac{π}{3}+kπ$],k∈Z.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在四棱锥P-ABCD中,底面ABCD为直角梯形,BC∥AD,AB⊥BC,侧面PAB⊥底面ABCD,PA=AD=3,BC=6,PB=3$\sqrt{3}$.
(Ⅰ)若PC中点为E,求证:DE∥平面PAB;
(Ⅱ)若∠PAB=60°,求直线DC与平面PAB成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求证:CD⊥AM;
(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=ex-e-x-xlna.
(1)若f(x)在R上单调递增,求实数a的取值范围;
(2)讨论f(x)的零点个数.

查看答案和解析>>

科目: 来源: 题型:选择题

2.定义在R上的函数f(x)的导函数为f′(x),如对任意实数x,有f(x)>f′(x),且f(x)+1为奇函数,则不等式f(x)+ex<0的解集是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,$\frac{1}{e}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

同步练习册答案