相关习题
 0  229285  229293  229299  229303  229309  229311  229315  229321  229323  229329  229335  229339  229341  229345  229351  229353  229359  229363  229365  229369  229371  229375  229377  229379  229380  229381  229383  229384  229385  229387  229389  229393  229395  229399  229401  229405  229411  229413  229419  229423  229425  229429  229435  229441  229443  229449  229453  229455  229461  229465  229471  229479  266669 

科目: 来源: 题型:选择题

7.若函数f(x)=lnx+(x-b)2(b∈R)在区间[$\frac{1}{2}$,2]上存在单调递增区间,则实数b的取值范围是(  )
A.(-∞,$\frac{3}{2}$)B.(-∞,$\frac{9}{4}$)C.(-$\frac{3}{2}$,$\frac{9}{4}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数f(x)的定义域为(-∞,0),其导函数f′(x),且满足f(x)+f′(x)<0,则不等式ex+2019f(x+2015)<f(-4)的解集为{x|-2019<x<-2015}.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知抛物线y2=8x的焦点是F,过焦点F作直线交准线l于点P,交抛物线于点Q,且$\overrightarrow{PF}$=2$\overrightarrow{FQ}$,则|$\overrightarrow{PF}$|=(  )
A.6B.12C.24D.38

查看答案和解析>>

科目: 来源: 题型:选择题

4.定义在[0,+∞)的函数f(x)的导函数为f′(x),对于任意的x≥0,恒有f′(x)>f(x),a=$\frac{f(2)}{{e}^{2}}$,b=$\frac{f(3)}{{e}^{3}}$,则a,b的大小关系是(  )
A.a>bB.a<bC.a=bD.无法确定

查看答案和解析>>

科目: 来源: 题型:选择题

3.设f(x),g(x)分别是定义在R上的奇函数和偶函数,g(x)≠0,当x<0时,f′(x)g(x)-f(x)g′(x)>0,且f(-3)=0,则不等式$\frac{f(x)}{g(x)}$<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目: 来源: 题型:填空题

2.矩形ABCD中,AB=2,AD=1,P为矩形内部一点,且AP=1.设∠PAB=θ,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),则2λ+$\sqrt{3}$μ取得最大值时,角θ的值为$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=lnx,g(x)=ax2-(2a+1)x,a∈R
(1)当a=1时,求不等式f(x)•g(x)>0的解集;
(2)若a≠0,求函数F(x)=f(x)+g(x)的单调递减区间;
(3)求证:当a∈[-$\frac{3+2\sqrt{2}}{2}$,$\frac{2}{3}$]时,对于任意两个不等的实数x1,x2∈[$\frac{1}{4}$,$\frac{3}{4}$],均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|是定值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.若函数f(x)=|lnx|+ax有且仅有两个零点,则实数a=$-\frac{1}{e}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知直线l:3x+4y+10=0,以C(2,1)为圆心的圆截直线l所得的弦长为6.
(1)求圆C的方程;
(2)是否存在斜率为1的直线m,使得以直线m被圆C截得的弦长AB为直径的圆经过原点?若存在,写出直线方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案