相关习题
 0  229287  229295  229301  229305  229311  229313  229317  229323  229325  229331  229337  229341  229343  229347  229353  229355  229361  229365  229367  229371  229373  229377  229379  229381  229382  229383  229385  229386  229387  229389  229391  229395  229397  229401  229403  229407  229413  229415  229421  229425  229427  229431  229437  229443  229445  229451  229455  229457  229463  229467  229473  229481  266669 

科目: 来源: 题型:填空题

7.抛物线y2=4x的焦点F关于直线y=2x的对称点坐标为(-$\frac{3}{5}$,$\frac{4}{5}$).

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知圆C1:x2+y2=r2和椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)若过圆C1上一点(x0,y0)作圆C1的切线,则切线方程为x0x+y0y=r2,类比圆的这一性质,若过椭圆C2上一点(x0,y0)作椭圆C2的切线,请写出切线的方程,并证明你的结论;
(2)如图1,设A,B,C,D分别是圆C1与坐标轴的四个交点,过圆C1上任意一点P(x0,y0)(不与A,B,C,D重合)的切线交x轴于点Q,连接PA交x轴于点H,则QD,QH,QC成等比数列,类比圆的这一性质,叙述在椭圆C2(如图2)中类似的性质,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,它的一个顶点恰好是抛物线x2=4$\sqrt{2}$y的焦点.
(1)求椭圆C的方程;
(2)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,如果为定值,求出斜率的值;如果不为定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(0,$\sqrt{2}$),且其离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)斜率为$\frac{1}{2}$的直线l交椭圆C于两个不同点A、B,点M的坐标为(2,1),设直线MA与MB的斜率分别为k1、k2
①若直线l过椭圆C的左顶点,求此时k1、k2的值;
②试探究k1+k2是否为定值?并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.求下列不定积分:
(1)∫(sec2x-2x+2)dx;
(2)∫x2$\sqrt{x}$dx;
(3)∫(1+tan2x)dx;
(4)∫(x2+1)2dx;
(5)∫(ex-$\frac{1}{{x}^{2}}$)dx;
(6)∫(cosx+$\frac{1}{x}$)dx;
(7)∫$\frac{1+2{x}^{2}}{{x}^{2}(1+{x}^{2})}$dx;
(8)∫$\frac{cos2x}{si{n}^{2}xco{s}^{2}x}$dx;
(9)∫$\frac{1}{1+cos2x}$dx;
(10)∫sin2$\frac{x}{2}$dx.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点构成面积为4的四边形,C的离心率为$\frac{\sqrt{3}}{2}$.
(I)求椭圆C的方程;
(Ⅱ)椭圆C的上、下顶点分别为A,B,过点T(t,2)(t≠0)的直线TA,TB分别与C相交于P,Q两点,若△TAB的面积是△TPQ的面积的λ倍,求λ的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.将圆C:x2+y2=4上点的横坐标的单位长度保持不变,纵坐标的单位长度缩短为原来的$\frac{1}{2}$.
(1)求压缩后的曲线方程;
(2)圆C上点P($\sqrt{2}$,$\sqrt{2}$)的切线,经过压缩后与压缩后曲线有何关系?

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{3}+{y^2}$=1,过点M(2,0)任作一条直线与C交于不同的两点A、B.
(1)求△OAB的面积的最大值;
(2)若椭圆C的左顶点为N,直线l:x=$\frac{3}{2}$,直线NA和NB交直线l与PQ两点,设A、B、P、Q的纵坐标分别为y1、y2、y3、y4.求证:$\frac{1}{y_1}$+$\frac{1}{y_2}$=$\frac{1}{y_3}$+$\frac{1}{y_4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)设集合A={x|f(x)≤|x-4|},集合B={x|1≤x≤2},且B⊆A,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

18.函数f(x)=$\frac{{x}^{3}+x}{{x}^{4}+6{x}^{2}+1}$+1的最大值与最小值的乘积为(  )
A.2B.$\frac{7}{9}$C.$\frac{15}{16}$D.$\frac{17}{16}$

查看答案和解析>>

同步练习册答案