相关习题
 0  229334  229342  229348  229352  229358  229360  229364  229370  229372  229378  229384  229388  229390  229394  229400  229402  229408  229412  229414  229418  229420  229424  229426  229428  229429  229430  229432  229433  229434  229436  229438  229442  229444  229448  229450  229454  229460  229462  229468  229472  229474  229478  229484  229490  229492  229498  229502  229504  229510  229514  229520  229528  266669 

科目: 来源: 题型:选择题

13.已知f(x)=2$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$,则下列结论错误的是(  )
A.f(x)在区间(0,$\frac{π}{6}$)上单调递增
B.f(x)的一个对称中心为(-$\frac{π}{12}$,0)
C.当x∈[0,$\frac{π}{3}$]时,fx)的值域为[1,$\sqrt{3}$]
D.先将函数f(x)的图象的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$个单位后得到函数y=2cos(4x+$\frac{π}{6}$)的图象

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,过抛物线x2=4y的对称轴上一点P(0,m)(m>0)作直线l1,l1与抛物线交于A,B两点.
(Ⅰ)若$\overrightarrow{OA}•\overrightarrow{OB}$<0(O为坐标原点),求实数m的取值范围;
(Ⅱ)过点P且与l1垂直的直线l2与抛物线交于C,D两点,设AB,CD的中点分别为M,N,求证:直线MN必过定点,并求出该定点坐标(用m表示).

查看答案和解析>>

科目: 来源: 题型:选择题

11.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为(  )
A.48B.80C.112D.144

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}cos(\frac{π}{2}-x)+2{cos^2}\frac{x}{2}$.
(Ⅰ)求$f(\frac{π}{3})$的值和f(x)的最小正周期;
(Ⅱ)求f(x)在[0,π]上的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=2$\sqrt{3}$cosωxcos(ωx+$\frac{π}{2}$)+2sin2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值和函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在区间$[{\frac{π}{3},π}]$上的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=sinxcosx-$\sqrt{3}{cos^2}$x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求f(x)的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}{cos^2}$x-sinxcos(π-x),x∈R.
(Ⅰ)求f(x)的最小正周期及单调区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,OPQ是半径为2,圆心角为$\frac{π}{3}$的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.
(1)找出S与θ的函数关系;
(2)试探求当θ取何值时,S最大,并求出这个最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=sin(x+θ)+mcos(x+2θ),其中m∈R,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).若f($\frac{π}{2}$)=0,f(π)=1
(1)求m,θ的值;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c,f(A)=-$\frac{1}{2}$,a=1,求△ABC的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=$\sqrt{3}$sin2x+2sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\sqrt{3}$.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1+$\sqrt{3}$,若a=3,sinB=2sinC,求b的值.

查看答案和解析>>

同步练习册答案