相关习题
 0  229406  229414  229420  229424  229430  229432  229436  229442  229444  229450  229456  229460  229462  229466  229472  229474  229480  229484  229486  229490  229492  229496  229498  229500  229501  229502  229504  229505  229506  229508  229510  229514  229516  229520  229522  229526  229532  229534  229540  229544  229546  229550  229556  229562  229564  229570  229574  229576  229582  229586  229592  229600  266669 

科目: 来源: 题型:选择题

14.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}$=4$\overrightarrow{FQ}$,则|QF|=(  )
A.3B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过M的直线与抛物线交于A,B两点.设A(x1,y1)到准线l的距离为d,且d=λp(λ>0).
(1)若y1=d=1,求抛物线的标准方程;
(2)若$\overrightarrow{AM}$+λ$\overrightarrow{AB}$=$\overrightarrow{0}$,求证:直线AB的斜率为定值.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知抛物线y2=4x的焦点为F,点M(m,0)在x轴的正半轴上且不与点F重合,若抛物线上的点满足$\overrightarrow{FA}$•$\overrightarrow{MA}$=0,且这样的点A只有两个,则m满足(  )
A.m=9B.m>9或0<m<1C.m>9D.0<m<1

查看答案和解析>>

科目: 来源: 题型:选择题

11.设M,N是抛物线y2=4x上分别位于x轴两侧的两个动点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,过点A(4,0)作MN的垂线与抛物线交于点P、Q两点,则四边形MPNQ面积的最小值为(  )
A.80B.100C.120D.160

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知抛物线y2=4x的焦点为F,A(-1,0),点P是抛物线上的动点,则当$\frac{{|{PF}|}}{{|{PA}|}}$的值最小时,△PAF的面积为(  )
A.$\frac{{\sqrt{2}}}{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目: 来源: 题型:填空题

9.所有棱长均为2的正四棱锥的外接球的表面积等于8π.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线与抛物线C交于点A,B两点,且直线l与圆x2-px+y2-$\frac{3}{4}{p^2}$=0交于C,D两点,若|AB|=2|CD|,则直线l的斜率为(  )
A.$±\frac{{\sqrt{2}}}{2}$B.$±\frac{{\sqrt{3}}}{2}$C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.过抛物线y2=2px(p>0)焦点F的直线与抛物线交于A,B两点,作AC,BD垂直抛物线的准线l于C,D,其中O为坐标原点,则下列结论正确的是①②③.(填序号)
①$\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{BD}-\overrightarrow{BA}$;
②存在λ∈R,使得$\overrightarrow{AD}=λ\overrightarrow{AO}$成立;
③$\overrightarrow{FC}•\overrightarrow{FD}$=0;
④准线l上任意一点M,都使得$\overrightarrow{AM}•\overrightarrow{BM}$>0.

查看答案和解析>>

科目: 来源: 题型:解答题

6.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:
时间周一周二周三周四周五
车流量x(万辆)5051545758
PM2.5的浓度y(微克/立方米)6970747879
(1)根据上表数据,请在如图坐标系中画出散点图;
(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;(保留2位小数)
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=xlnx,g(x)=-x2+ax-3(a∈R).
(1)若对?x∈(0,+∞),恒有不等式f(x)≥$\frac{1}{2}$g(x),求a得取值范围;
(2)证明:对?x∈(0,+∞),有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

同步练习册答案