相关习题
 0  229474  229482  229488  229492  229498  229500  229504  229510  229512  229518  229524  229528  229530  229534  229540  229542  229548  229552  229554  229558  229560  229564  229566  229568  229569  229570  229572  229573  229574  229576  229578  229582  229584  229588  229590  229594  229600  229602  229608  229612  229614  229618  229624  229630  229632  229638  229642  229644  229650  229654  229660  229668  266669 

科目: 来源: 题型:填空题

6.已知(x+$\frac{{\root{3}{a}}}{x}$)6的展开式中,常数项为40,则$\int_0^1{x^a}$dx=$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.把函数f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)的图象向右平移$\frac{2π}{3}$个单位长度后与原图象重合,则当ω取最小值时,f(x)的单调递减区间是(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$](k∈Z)
C.[$\frac{2kπ}{3}$-$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{5π}{18}$](k∈Z)D.[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$-$\frac{π}{18}$](k∈Z)

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ 3x-y-3≤0\end{array}\right.$,则目标函数z=2x+y的取值范围是(  )
A.[1,5]B.[-2,5]C.[1,7]D.[-2,7]

查看答案和解析>>

科目: 来源: 题型:选择题

3.关于函数f(x)=5sin3x+5$\sqrt{3}$cos3x,下列说法正确的是(  )
A.函数f(x)关于x=$\frac{5}{9}$π对称
B.函数f(x)向左平移$\frac{π}{18}$个单位后是奇函数
C.函数f(x)关于点($\frac{π}{18}$,0)中心对称
D.函数f(x)在区间[0,$\frac{π}{20}$]上单调递增

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=2ex+2ax-a2,a∈R.
(1)当a=1时,求f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)的单调区间;
(3)若x≥0时,f(x)≥x2-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

1.若x,y满足条件$\left\{\begin{array}{l}x-2≥0\\ x+y≤6\\ 2x-y≤6\end{array}\right.$,则$\frac{y}{x}$的最大值等于2.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且点(1,$\frac{\sqrt{3}}{2}$)在该椭圆上.
(1)求椭圆的方程;
(2)不垂直坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点P(0,-$\frac{3}{2}$),求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

19.N为圆x2+y2=1上的一个动点,平面内动点M(x0,y0)满足|y0|≥1且∠OMN=30°(O为坐标原点),则动点M运动的区域面积为(  )
A.$\frac{8π}{3}$-2$\sqrt{3}$B.$\frac{4π}{3}$-$\sqrt{3}$C.$\frac{2π}{3}$+$\sqrt{3}$D.$\frac{4π}{3}$+$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点P在圆C:x2+(y+2)2=9上,且椭圆的离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆E的方程;
(2)若过圆C的圆心的直线与椭圆E交于A、B两点,且$\overrightarrow{PA}$•$\overrightarrow{PB}$=1,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左、右焦点分别为F1,F2,点G在椭圆C上,且$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0,△GF1F2的面积为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆的左右顶点为A,B,过F2的直线l与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于x轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案