相关习题
 0  229514  229522  229528  229532  229538  229540  229544  229550  229552  229558  229564  229568  229570  229574  229580  229582  229588  229592  229594  229598  229600  229604  229606  229608  229609  229610  229612  229613  229614  229616  229618  229622  229624  229628  229630  229634  229640  229642  229648  229652  229654  229658  229664  229670  229672  229678  229682  229684  229690  229694  229700  229708  266669 

科目: 来源: 题型:解答题

20.已知函数f(x)=ax2-(a+2)x+1.
(1)若f(x)在区间(-2,-1)上恰有一个零点,求实数a的取值范围;
(2)若函数y=f(2x)有两个零点,且一个零点大于1,一个零点小于1,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$,求|$\overrightarrow{a}$-$\overrightarrow{b}$|和<$\overrightarrow{a}$,$\overrightarrow{a}$-$\overrightarrow{b}$>的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.点M(x,y)在函数y=2x+8的图象上,当x∈[-3,5]时,
(1)求$\frac{y+1}{x+1}$的取值范围;
(2)求$\frac{2y+1}{x-6}$的取值范围;
(3)求$\frac{2x+1}{y-5}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.用拉格朗日中值定理证明不等式:$\frac{x}{1+x}$<ln(1+x)<x(x>0).

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知命题p:?x∈[-1,1],m≤x2,命题q:?x∈R,x2+mx+1>0,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知cosα=$\frac{3}{5}$,α的终边在第四象限,求sin$\frac{α}{2}$,cos$\frac{α}{2}$,tan$\frac{α}{2}$的值.

查看答案和解析>>

科目: 来源: 题型:选择题

14.Sn为正项等比数列{an}的前n项和,若S2是S4与-5的等差中项,则a5+a6的最小值为(  )
A.50B.40C.30D.20

查看答案和解析>>

科目: 来源: 题型:填空题

13.设P是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上一点,过原点O作焦半径PF1的平行线交椭圆在P点处的切线于T,则OT=a.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知双曲线C1和椭圆C2有相同的焦点F1(-c,0),F2(c,0)(c>0),两曲线在第一象限内的交点为P,椭圆C2与y轴负方向交点为B,且P,F2,B三点共线,F2分$\overrightarrow{PB}$所成的比为1:2,又直线PB与双曲线C1的另一个交点为Q,若|F2Q|=$\frac{\sqrt{3}}{5}$,求双曲线C1和椭圆C2的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

11.在直角梯形ABCD中,AB=2AD=2DC,E为BC边上的一点,$\overrightarrow{BC}$=3$\overrightarrow{EC}$,F为AE中点,则$\overrightarrow{BF}$=(  )
A.$\frac{2}{3}\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AD}$B.$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}\overrightarrow{AD}$C.-$\frac{2}{3}\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$D.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$

查看答案和解析>>

同步练习册答案