相关习题
 0  229567  229575  229581  229585  229591  229593  229597  229603  229605  229611  229617  229621  229623  229627  229633  229635  229641  229645  229647  229651  229653  229657  229659  229661  229662  229663  229665  229666  229667  229669  229671  229675  229677  229681  229683  229687  229693  229695  229701  229705  229707  229711  229717  229723  229725  229731  229735  229737  229743  229747  229753  229761  266669 

科目: 来源: 题型:选择题

4.以下四个命题中,正确的个数是(  )
①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,则f(x)不是三角函数”;
②命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x<0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要条件;
④若函数f(x)在(2015,2017)上有零点,则一定有f(2015)•f(2017)<0.
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:解答题

3.一口袋中有5只球,标号分别为1,2,3,4,5.
(1)如果从袋中同时取出3只,以ξ表示取出的三只球的最小号码,求ξ的分布列;
(2)如果从袋中取出1只,记录号码后放回袋中,再取1只,记录号码后放回袋中,这样重复三次,以η表示三次中取出的球的最小号码,求η的分布列.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=ex-ax2+1的定义域为R,其导函数为f′(x).
(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若a=1,曲线y=f(x)在x=0处的切线为直线l,求直线l与函数g(x)=f′(x)+2x及直线x=0、x=1围成的封闭区域的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

1.设随机变量ξ的概率分布列为P(ξ=k)=a($\frac{1}{3}$)k,其中k=0,1,2,那么a的值为(  )
A.$\frac{3}{5}$B.$\frac{27}{13}$C.$\frac{9}{19}$D.$\frac{9}{13}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.用综合法或分析法证明:
(1)如果a,b>0,则lg $\frac{a+b}{2}$≥$\frac{lga+lgb}{2}$;
(2)$\sqrt{6}$+$\sqrt{10}$>2$\sqrt{3}$+2.

查看答案和解析>>

科目: 来源: 题型:填空题

19.下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]′;
②若函数h(x)=cos4x-sin4x,则h′($\frac{π}{12}$)=0;
③若函数g(x)=(x-1)(x-2)(x-3)…(x-2015)(x-2016),则g′(2016)=2015!;
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中假命题为①②④.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边长分别为a,b,c,B=45°.b=3
(Ⅰ)若cosC+$\sqrt{2}{cosA}$=1,求A和c的值;
(Ⅱ)若$\overrightarrow m$=(2sin$\frac{A}{2}$,-1),$\overrightarrow n$=(${\sqrt{3}$cos$\frac{A}{2}$,2sin2$\frac{A}{2}}$),f(A)=$\overrightarrow m•\overrightarrow n$,当$\frac{π}{4}$<A≤$\frac{π}{2}$,求f(A)的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,有下列五个说法:
①S6为Sn的最大值,②S11>0,③S12<0,④S13<0,⑤S8-S5>0,
其中说法正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

16.(1)求证$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$;
(2)如图,已知AB、CD相交于O,△ACO≌△BDO,AE=BF,证明:CE=FD.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=λ1($\frac{a}{3}{x}^{3}$+$\frac{b-1}{2}$x2+x)+λ2x•3x,(a,b∈R且a>0).
(1)当λ1=1,λ2=0时,若已知x1,x2是函数f(x)的两个极值点,且满足:x1<1<x2<2,求证:f′(-1)>3;
(2)当λ1=0,λ2=1时,
①求实数y=f(x)-3(1+ln3)x(x>0)的最小值;
②对于任意正实数a,b,c,当a+b+c=3时,求证:a•3a+b•3b+c•3c≥9.

查看答案和解析>>

同步练习册答案