相关习题
 0  229735  229743  229749  229753  229759  229761  229765  229771  229773  229779  229785  229789  229791  229795  229801  229803  229809  229813  229815  229819  229821  229825  229827  229829  229830  229831  229833  229834  229835  229837  229839  229843  229845  229849  229851  229855  229861  229863  229869  229873  229875  229879  229885  229891  229893  229899  229903  229905  229911  229915  229921  229929  266669 

科目: 来源: 题型:解答题

20.已知抛物线C:x2=4y与直线y=kx+1交于M,N两点,其中点M位于点N的左侧.
(1)当k=0时,分别求抛物线C在点M和N处的切线方程;
(2)在y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN(O为坐标原点)?若存在,求出P点坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=$\frac{2-x}{x-1}$+aln(x-1)(a∈R).
(Ⅰ) 若函数f(x)在区间[2,+∞)上是单调递增函数,试求实数a的取值范围;
(Ⅱ) 当x∈[2,+∞)时,求证:$\frac{x-2}{x-1}$≤2ln(x-1)≤2x-4;
(Ⅲ) 求证:$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2n}$<lnn<1+$\frac{1}{2}$+…+$\frac{1}{n-1}$(n∈N*且n≥2).

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=cosx+ax2-1,a∈R.
(1)当a=0时,求函数f(x)在$x=\frac{π}{2}$处的切线方程;
(2)当a=1时,求函数f(x)在[-π,π]上的最大值和最小值;
(3)若对于任意的实数x恒有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.设a为实数,函数f(x)=x2e1-x-a(x-1).
(1)当a=0时,求f(x)在$(\frac{3}{4},3)$上的最大值;
(2)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两个极值点x1,x2(x1<x2)时,总有x2g(x1)≤λf′(x1),求实数λ的值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥0时,若满足?x>0,f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

15.函数f(x)=lnx-x在区间(0,e]上的最大值为-1.

查看答案和解析>>

科目: 来源: 题型:填空题

14.函数f(x)=x3-3x2+5在区间$[{1,\frac{5}{2}}]$上的最小值是1.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设函数f(x)=x-alnx+$\frac{1-a}{x}$.
(Ⅰ)若a>1,求函数f(x)的单调区间;
(Ⅱ)若a>3,函数g(x)=a2x2+3,若存在x1,x2∈[$\frac{1}{2}$,2],使得|f(x1)-g(x2)|<9成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x.
(1)讨论函数g(x)的单调性;
(2)若$a<\frac{1}{2}$时,函数g(x)在(0,e]上的最大值为1,求a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.(1)求函数f(x)=xlnx在x=e处的切线方程;
(2)x∈R,证明不等式ex≥x+1.

查看答案和解析>>

同步练习册答案