相关习题
 0  229763  229771  229777  229781  229787  229789  229793  229799  229801  229807  229813  229817  229819  229823  229829  229831  229837  229841  229843  229847  229849  229853  229855  229857  229858  229859  229861  229862  229863  229865  229867  229871  229873  229877  229879  229883  229889  229891  229897  229901  229903  229907  229913  229919  229921  229927  229931  229933  229939  229943  229949  229957  266669 

科目: 来源: 题型:解答题

10.已知函数f(x)=x|x+a|-$\frac{1}{2}$lnx.
(1)当a=0时,讨论函数f(x)的单调性;
(2)若a<0,讨论函数f(x)的极值点.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)满足:①f(x)=2f(x+2),x∈R;②f(x)=lnx+ax,x∈(0,2);③f(x)在(-4,-2)内能取得最大值-4.
(Ⅰ)求实数a的值;
(Ⅱ)设函数g(x)=$\frac{1}{3}$bx3-bx,若对任意的x1∈(1,2)总存在x2∈(1,2)使得f(x1)=g(x2),求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数$f(x)=x•ln\frac{a}{x}\;\;(a>0)$.
(Ⅰ)若函数g(x)=ex在x=0处的切线也是函数f(x)图象的一条切线,求实数a的值;
(Ⅱ)若函数f(x)的图象恒在直线x-y+1=0的下方,求实数a的取值范围;
(Ⅲ)若x1,x2∈($\frac{a}{e}$,$\frac{a}{2}$),且x1≠x2,判断${({{x_1}+{x_2}})^4}$与a2x1x2的大小关系,并说明理由.
注:题目中e=2.71828…是自然对数的底数.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=$\frac{{e}^{x}}{{x}^{2}-mx+1}$
(Ⅰ)若m∈(-2,2),求函数y=f(x)的单调区间;
(Ⅱ)若m∈(0,$\frac{1}{2}$],则当x∈[0,m+1)时,函数y=f(x)的图象是否总存在直线y=x上方?请写出判断过程.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数$f(x)=\sqrt{|{x+2}|+|{x-4}|-m}$的定义域为R.
(Ⅰ)求实数m的范围;
(Ⅱ)若m的最大值为n,当正数a,b满足$\frac{4}{a+5b}+\frac{1}{3a+2b}=n$时,求4a+7b的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=(x+a)ex,(CR).
(Ⅰ)若函数f(x)在区间(-∞,2]上是减函数,求实数a的取值范围;
(Ⅱ)若f(x)≥e2x在x∈[0,ln3]时恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.公差不为0的等差数列{an}的前n项和为Sn,若a1=1,S1,S2,S4成等比.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{S_n}$,证明对任意的n∈N*,b1+b2+b3+…+bn<2恒成立.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知f(x)=ex-x-1(e为自然对数的底数).
(1)求证:f(x)≥0恒成立;
(2)求证:($\frac{1}{2n}$)n+($\frac{3}{2n}$)n+($\frac{5}{2n}$)n+…+($\frac{2n-1}{2n}$)n<$\frac{\sqrt{e}}{e-1}$对一切正整数n均成立.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{2a}{x}$,a∈R.
(Ⅰ)若函数f(x)在[2,+∞)上是增函数,求实数a的取值范围;
(Ⅱ)若x∈[1,e],求函数f(x)的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=(x+1)ln(x+1)-ax2-2ax(a∈R),它的导函数为f′(x).
(Ⅰ)若函数g(x)=f′(x)+(2a-1)x只有一个零点,求a的值;
(Ⅱ)是否存在实数a,使得关于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案