相关习题
 0  229926  229934  229940  229944  229950  229952  229956  229962  229964  229970  229976  229980  229982  229986  229992  229994  230000  230004  230006  230010  230012  230016  230018  230020  230021  230022  230024  230025  230026  230028  230030  230034  230036  230040  230042  230046  230052  230054  230060  230064  230066  230070  230076  230082  230084  230090  230094  230096  230102  230106  230112  230120  266669 

科目: 来源: 题型:解答题

14.在直角坐标系xOy中,曲线C的参数方程为:$\left\{{\begin{array}{l}{x=1+\sqrt{3}cosφ}\\{y=\sqrt{3}sinφ}\end{array}}$(φ是参数方程,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线l1的极坐标方程是2ρsin(θ+$\frac{π}{3}$)+3$\sqrt{3}$=0,直线l2:θ=$\frac{π}{3}$(ρ∈R)与曲线C的交点为P,与直线l1的交点为Q,求线段PQ的长.

查看答案和解析>>

科目: 来源: 题型:填空题

13.若一个长方体内接于表面积为4π的球,则这个长方体的表面积的最大值是8.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知Sn为数列{an}的前n项和,a1=1,2Sn=(n+1)an,若存在唯一的正整数n使得不等式an2-tan-2t2≤0成立,则实数t的取值范围为-2<t≤-1或$\frac{1}{2}$≤t<1.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知数列{an}满足:${a_{n+1}}=a_n^2-2(n∈N*)$,且${a_1}=a+\frac{1}{a}(0<a<1)$.
(Ⅰ)证明:an+1>an
(Ⅱ)若不等式$\frac{1}{a_1}+\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_1}{a_2}{a_3}}}+…+\frac{1}{{{a_1}{a_2}{a_3}…{a_n}}}<\frac{1}{2}$对任意n∈N*都成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=ln($\frac{x-1}{3}$)+$\frac{a}{x+2}$(a∈R).
(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;
(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知一个棱长为$\sqrt{2}$的正四面体内接于球,则该球的表面积是3π.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥面ABCD,E为PD的中点.
(1)求证:PB∥平面AEC;
(2)设AP=1,AD=2,∠ABC=60°,求点A到平面PBD的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1
(Ⅱ)若CD=$\sqrt{2}$a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知A,B,C是球面上三点,且AB=6,BC=8,AC=10,球心O到平面ABC的距离等于该球半径的$\frac{1}{2}$,则此球的表面积为(  )
A.$\frac{100}{3}$πB.$\frac{200}{3}$πC.$\frac{400}{3}$πD.$\frac{400}{9}$π

查看答案和解析>>

科目: 来源: 题型:选择题

5.若体积为4的长方体的一个面的面积为1,且这个长方体8个顶点都在球O的球面上,则球O表面积的最小值为(  )
A.12πB.16πC.18πD.24π

查看答案和解析>>

同步练习册答案