相关习题
 0  229984  229992  229998  230002  230008  230010  230014  230020  230022  230028  230034  230038  230040  230044  230050  230052  230058  230062  230064  230068  230070  230074  230076  230078  230079  230080  230082  230083  230084  230086  230088  230092  230094  230098  230100  230104  230110  230112  230118  230122  230124  230128  230134  230140  230142  230148  230152  230154  230160  230164  230170  230178  266669 

科目: 来源: 题型:填空题

6.在吸烟与患肺病是否相关的判断中,有下面的说法:
①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;
③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.
其中说法正确的是③(填序号)

查看答案和解析>>

科目: 来源: 题型:填空题

5.若$\overrightarrow{m}$=(2,-1),$\overrightarrow{n}$=(-1,t),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,则实数t的值等于-2.

查看答案和解析>>

科目: 来源: 题型:选择题

4.为了调查“小学成绩”和“中学成绩”两个变量之间是否存在相关关系,某科研机构将所调查的结果统计如表所示:
中学成绩不优秀中学成绩优秀总计
小学成绩优秀52025
小学成绩不优秀10515
合计152540
则下列说法正确的是(  )
A.在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩无关”
B.在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩有关”
C.在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩无关”
D.在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩有关”

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=x2-2ax+2a,g(x)=(2-a)x,其中a∈R.
(1)若f(x)为偶函数,求a的值;
(2)求关于x的不等式f(x)>g(x)的解集;
(3)若f(x)-g(x)>-4对任意的x∈[3,6]恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q为PD的中点.
(Ⅰ)证明:CQ∥平面PAB;
(Ⅱ)求直线PD与平面AQC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若m=$\sqrt{a}$-$\sqrt{a-1}$,n=$\sqrt{a-2}$-$\sqrt{a-3}$ (a≥3),则(  )
A.m>nB.m=n
C.m<nD.m与的n大小关系不确定

查看答案和解析>>

科目: 来源: 题型:选择题

20.设i是虚数单位,复数z满足$\frac{1+z}{1-z}=i$,则$|{\overline z}|$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知双曲线E的中心在坐标原点,离心率为2,E的右焦点与抛物线C:y2=8x的焦点重合,A、B是C的准线与E的两个交点,则|AB|=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目: 来源: 题型:选择题

18.设不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到点(1,1)的距离大于1的概率是(  )
A.$\frac{4-π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an,an+1)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)已知数列{bn},且bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案