相关习题
 0  230019  230027  230033  230037  230043  230045  230049  230055  230057  230063  230069  230073  230075  230079  230085  230087  230093  230097  230099  230103  230105  230109  230111  230113  230114  230115  230117  230118  230119  230121  230123  230127  230129  230133  230135  230139  230145  230147  230153  230157  230159  230163  230169  230175  230177  230183  230187  230189  230195  230199  230205  230213  266669 

科目: 来源: 题型:解答题

5.已知△ABC内角A,B,C的对边分别是a,b,c.且$\frac{ac}{{b}^{2}-{a}^{2}-{c}^{2}}$=$\frac{sinAcosA}{cos(A+C)}$.
(1)求角A;
(2)当sinB-cos(C+$\frac{π}{12}$)取最大值时,求$\frac{b}{a}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知A是△ABC的内角,且sinA+cosA=-$\frac{7}{13}$,求tan($\frac{π}{4}$+A)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,过点F的直线交椭圆于A,B两点,|AF|的最大值为M,|BF|的最小值为m,满足M•m=$\frac{3}{4}$a2
(Ⅰ)若线段AB垂直于x轴时,|AB|=$\frac{3}{2}$,求椭圆的方程;
(Ⅱ)若椭圆的焦距为2,设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点,记△GFD的面积为S1,△OED的面积为S2,求$\frac{2{S}_{1}{S}_{2}}{{{S}_{1}}^{2}+{{S}_{2}}^{2}}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.锐角△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量$\overrightarrow{m}$=(2,c),$\overrightarrow{n}$=($\frac{b}{2}$cosC-sinA,cosB),已知b=$\sqrt{3}$,且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角B;
(2)求△ABC面积的最大值及此时另外两个边a,c的长.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知x>y>0,则x+$\frac{1}{{({x-y})y}}$的最小值是(  )
A.2B.3C.4D.9

查看答案和解析>>

科目: 来源: 题型:解答题

20.在△ABC中,∠B=$\frac{π}{4}$,AB=4$\sqrt{2}$,点D在BC上,且CD=3,cos∠ADC=$\frac{{\sqrt{5}}}{5}$.
(I)求sin∠BAD;  
(Ⅱ)求BD,AC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=2sinx(sinx+$\sqrt{3}$cosx)-1(其中x∈R),求:
(1)函数f(x)的最小正周期;
(2)函数f(x)的单调减区间;
(3)函数f(x)图象的对称轴和对称中心.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知cosx=-$\frac{3}{5}$,x∈(0,π)
(Ⅰ)求cos(x-$\frac{π}{4}$)的值;        
(Ⅱ)求sin(2x+$\frac{π}{3}$)的值.

查看答案和解析>>

科目: 来源: 题型:选择题

17.设f(x)是(-∞,+∞)上的减函数,则不等式f(2)<f($\frac{1}{x}$)的解集是(  )
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(-∞,0)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目: 来源: 题型:填空题

16.给出下列四个命题:
①函数y=2sin(2x-$\frac{π}{3}$)的一条对称轴是x=$\frac{5π}{12}$;
②函数y=tanx的图象关于点($\frac{π}{2}$,0)对称;
③正弦函数在第一象限为增函数
④存在实数α,使$\sqrt{2}$sin(α+$\frac{π}{4}}$)=$\frac{3}{2}$
以上四个命题中正确的有①②(填写正确命题前面的序号)

查看答案和解析>>

同步练习册答案