相关习题
 0  230043  230051  230057  230061  230067  230069  230073  230079  230081  230087  230093  230097  230099  230103  230109  230111  230117  230121  230123  230127  230129  230133  230135  230137  230138  230139  230141  230142  230143  230145  230147  230151  230153  230157  230159  230163  230169  230171  230177  230181  230183  230187  230193  230199  230201  230207  230211  230213  230219  230223  230229  230237  266669 

科目: 来源: 题型:解答题

11.为了了解网购是否与性别有关,对50名青年人进行问卷调查得到了如下的统计表:
喜爱网购不喜爱网购合计
20525
101525
合计302050
(1)用分层抽样的方法在喜爱网购的人中抽6人,其中抽到多少名女性?
(2)在上述抽到的6人中选2人,求恰好有一名男性的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,已知三棱柱ABC-A′B′C′的所有棱长都是2,且∠A′AB=∠A′AC=60°.
(1)求证:点A′在底面ABC内的射影在∠BAC的平分线上;
(2)求棱柱ABC-A′B′C′的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面是矩形,△PAD为等边三角形,且平面PAD⊥平面ABCD,E,F分别为PC和BD的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)证明:平面PDC⊥平面PAD;
(Ⅲ)若矩形ABCD的周长为6,设AD=x,当x为何值时,四棱锥P-A BCD的体积最大?

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知数列{an}的前n项和Sn满足6Sn=9an-1.
(I)求数列{an}的通项公式;
(Ⅱ)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的周期为π,且在x=$\frac{π}{6}$处取得最大值,最大值为a3,求函数f(x)的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{3}$,且图象上相邻两个最低点的距离为π.
(1)函数f(x)的解析式;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[-π,π]上的值域;
(3)求(2)中g(x)在[$\frac{π}{3}$,$\frac{10π}{3}$]上的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:填空题

6.给出下列命题:
①函数f(x)=cosx,g(x)=|cosx|都是周期函数,且最小正周期都为2π;
②函数y=sin|x|在区间(-$\frac{π}{2}$,0)上递增;
③函数y=cos($\frac{3x}{4}$+$\frac{π}{2}$)是奇函数;
④函数y=tan(2x-$\frac{π}{6}$)的定义域是{x|x∈R且x≠$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z};
⑤函数f(x)是偶函数,且图象关于直线x=2对称,则4为f(x)的一个周期.
其中正确的命题是③④⑤(把正确命题的序号都填上)

查看答案和解析>>

科目: 来源: 题型:选择题

5.函数y=2cos(2x+$\frac{π}{4}$),x∈R的单调递减区间是(  )
A.[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈ZB.[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z
C.[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈ZD.[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z

查看答案和解析>>

科目: 来源: 题型:选择题

4.化简:$\overrightarrow{AB}$+$\overrightarrow{DC}$+$\overrightarrow{BD}$-$\overrightarrow{AC}$=(  )
A.2$\overrightarrow{AD}$B.2$\overrightarrow{DA}$C.$\overrightarrow{0}$D.$\overrightarrow{AC}$

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知数列{an}的每一项均为正数,a1=1,a2n+1=an2+1(n=1,2…),试归纳成数列{an}的一个通项公式为an=$\sqrt{n}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.(1)用数学归纳法证明:12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$,n是正整数;
(2)用数学归纳法证明不等式:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$(n∈N*

查看答案和解析>>

同步练习册答案