相关习题
 0  230079  230087  230093  230097  230103  230105  230109  230115  230117  230123  230129  230133  230135  230139  230145  230147  230153  230157  230159  230163  230165  230169  230171  230173  230174  230175  230177  230178  230179  230181  230183  230187  230189  230193  230195  230199  230205  230207  230213  230217  230219  230223  230229  230235  230237  230243  230247  230249  230255  230259  230265  230273  266669 

科目: 来源: 题型:选择题

3.已知函数f(x),对?a,b,c∈R,f(a),f(b),f(c)为一个三角形的三边长,则称f(x)为“三角形函数”,已知函数f(x)=mcos2x+msinx+3是“三角形函数”,则实数m的取值范围是(  )
A.(-$\frac{6}{7}$,$\frac{12}{13}$)B.[-2,$\frac{12}{13}$]C.[0,$\frac{12}{13}$]D.(-2,2)

查看答案和解析>>

科目: 来源: 题型:解答题

2.计算下列定积分:
(1)$\int{\begin{array}{l}2\\ 1\end{array}}({e^x}+\frac{1}{x})$dx
(2)$\int{\begin{array}{l}1\\{-1}\end{array}}(3{x^2}+2x+1)$dx
(3)求如图所示阴影部分的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知直线ln:y=x-$\sqrt{2n}$与圆Cn:x2+y2=2an+n交于不同的两点An,Bn,n∈N*.数列{an}满足:a1=1,an+1=$\frac{1}{4}{|{{A_n}{B_n}}|^2}$.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=$\frac{n}{{4{a_n}}}$,求数列{bn}的前n项和Tn
(Ⅲ)记数列{an}的前n项和为Sn,在(Ⅱ)的条件下,求证:对任意正整数n,$\sum_{k=1}^{n}$$\frac{k+2}{{S}_{k}({T}_{k}+k+1)}$<2.

查看答案和解析>>

科目: 来源: 题型:选择题

20.如图,AA1,BB1均垂直于平面ABC和平面A1B1C1,∠BAC=∠A1B1C1=90°,AC=AB=A1A=B1C1=$\sqrt{2}$,则多面体ABC-A1B1C1的外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知函数f(x)=$\left\{{\begin{array}{l}{-\frac{1}{2}x+\frac{1}{4},x∈[0,\frac{1}{2}]}\\{\frac{x}{x+2},x∈(\frac{1}{2},1]}\end{array}}$,g(x)=acos$\frac{πx}{2}$+5-2a(a>0)若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是[$\frac{7}{3}$,5].

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知一元二次方程x2+(a-1)x+1-a2=0的两根都大于0,则a的取值范围是(  )
A.-1<a<1B.a≤-$\frac{3}{5}$或a≥1C.-1<a≤-$\frac{3}{5}$D.-$\frac{3}{5}$≤a<1

查看答案和解析>>

科目: 来源: 题型:解答题

17.在△ABC中,角A、B、C所对的边分别为a,b,c,已知2c-a=$\frac{bcosA}{cosB}$,b=$\sqrt{3}$
(1)求角B;
(2)求c+2a的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

16.若x,y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,则$\frac{x}{y^2}$的最小值为(  )
A.1B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.某种种子每粒发芽的概率都为0.85,现播种了10000粒,对于没有发芽的种,每粒需要再补2粒,补种的种子数记为x,则x的数学期望为(  )
A.1000B.2000C.3000D.4000

查看答案和解析>>

科目: 来源: 题型:解答题

14.户外运动已经成为一种时尚运动.某公司为了了解员工喜欢户外运动是否与性别有关,决定从公司全体650人中随机抽取50人进行问卷调查.
喜欢户外运动不喜欢户外运动合计
男员工5
女员工10
合计50
(Ⅰ)通过对挑选的50人进行调查,得到如下2×2列联表:
已知从这50人中进行随机挑选1人,此人喜欢户外运动的概率是0.6.请将2×2列联表补充完整,并估计该公司男、女员工各多少人;
(Ⅱ)估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;
(Ⅲ)若用随机数表法从650人中抽取员工.先将650人按000,001,…,649编号.恰好000~199号都为男员工,450~649号都为女员工.现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求至少取到1位男员工的概率.
附:
P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
随机数表:
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

查看答案和解析>>

同步练习册答案