相关习题
 0  230166  230174  230180  230184  230190  230192  230196  230202  230204  230210  230216  230220  230222  230226  230232  230234  230240  230244  230246  230250  230252  230256  230258  230260  230261  230262  230264  230265  230266  230268  230270  230274  230276  230280  230282  230286  230292  230294  230300  230304  230306  230310  230316  230322  230324  230330  230334  230336  230342  230346  230352  230360  266669 

科目: 来源: 题型:解答题

10.如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
(Ⅰ)求证:CE2=CD•CB.
(Ⅱ)若AB=2,BC=$\frac{12}{5}$,求CE与CD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=$\frac{x^2}{1-x}$(x≠1),数列{an}满足a1=m(m≠1),an+1=f(an).
(Ⅰ)当m=-1时,写出数列{an}的通项公式;
(Ⅱ)是否存在实数m,使得数列{an}是等比数列?若存在,求出所有符合要求的m的值;若不存在,请说明理由;
(Ⅲ)当0<m<$\frac{1}{2}$时,求证:$\underset{\stackrel{n}{π}}{i=1}$(ai+1+ai)<$\frac{1}{2m}$.
(其中π是求乘积符号,如$\underset{\stackrel{5}{π}}{i=1}$i=1×2×3×4×5,$\underset{\stackrel{n}{π}}{i=1}$ai=a1×a2×…×an

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知侧棱与底面垂直的三棱柱的底面是边长为2$\sqrt{3}$的正三角形,三棱柱存在一个与上、下底面及所有侧面都相切的内切球,则该棱柱的外接球与内切球的半径之比为(  )
A.$\sqrt{3}$:$\sqrt{2}$B.$\sqrt{5}$:1C.$\sqrt{5}$:$\sqrt{2}$D.$\sqrt{2}$:1

查看答案和解析>>

科目: 来源: 题型:解答题

7.(1)类比平面内直角三角形ABC的勾股定理,试给出空间中四面体P-DEF性质的猜想;
(2)证明第(1)问中得到的猜想.

查看答案和解析>>

科目: 来源: 题型:填空题

6.圆(x-a)2+(y-b)2=r2(r>0)在点P(x0,y0)处切线的方程为(x0-a)(x-a)+(y0-b)(y-b)=r2,由此类比,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)在点P(x0,y0)处切线的方程为$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数f(x)=x(lnx-ax)有极值,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(0,$\frac{1}{2}$)C.(-∞,$\frac{1}{2}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目: 来源: 题型:解答题

4.[B]在几何中可以类比平面几何的结论推理空间几何的结论,如平面内的三点共线类比空间中的四点共面.
(1)已知点A,B,C是平面内三点,若存在实数λ,使得$\overrightarrow{AB}$=$λ\overrightarrow{AC}$成立,则点A,B,C共线.类比上述结论,写出空间中四点共面的结论;
(2)已知(1)结论的逆命题正确,请利用其解决以下问题:已知点A,B,C,D是空间中共面的四点,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=90°,AD是△ABC的高,试用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示$\overrightarrow{AD}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.[A]在几何中可以类比平面几何的结论推理空间几何的结论,如平面内的三点共线类比空间中的四点共面.
(1)已知点A,B,C是平面内三点,若存在实数λ,使得$\overrightarrow{AB}$=$λ\overrightarrow{AC}$成立,则点A,B,C共线.类比上述结论,写出空间中四点共面的结论;
(2)已知(1)结论的逆命题正确,请利用其解决以下问题:已知点A,B,C,D是空间中共面的四点,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=90°,|$\overrightarrow{AD}$|=2$\sqrt{5}$,$\overrightarrow{AD}⊥\overrightarrow{BC}$,试用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示$\overrightarrow{AD}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d 的长方体中,有(  )
A.p2+q2+r2+pq+qr+rp=d2B.p3+q3+r3=d3
C.p2+q2+r2=d2D.p+q+r=d

查看答案和解析>>

科目: 来源: 题型:填空题

1.我们在学习立体几何推导球的体积公式时,用到了祖日恒原理:即两个等高的几何体,被等高的截面所截,若所截得的面积总相等,那么这两个几何体的体积相等.类比此方法:求双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0),与x轴,直线y=h(h>0)及渐近线$y=\frac{b}{a}x$所围成的阴影部分(如图)绕y轴旋转一周所得的几何体的体积a2hπ.

查看答案和解析>>

同步练习册答案