相关习题
 0  230167  230175  230181  230185  230191  230193  230197  230203  230205  230211  230217  230221  230223  230227  230233  230235  230241  230245  230247  230251  230253  230257  230259  230261  230262  230263  230265  230266  230267  230269  230271  230275  230277  230281  230283  230287  230293  230295  230301  230305  230307  230311  230317  230323  230325  230331  230335  230337  230343  230347  230353  230361  266669 

科目: 来源: 题型:填空题

20.如图(1)有面积关系:$\frac{{S}_{△P{A}^{′}{B}^{′}}}{{S}_{△PAB}}$=$\frac{PA′•PB′}{PA•PB}$,则图(2)有体积关系:$\frac{{V}_{P-{A}^{′}{B}^{′}{C}^{′}}}{{V}_{P-ABC}}$=$\frac{PA′•PB′•PC′}{PA•PB•PC}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知两个同底的正四棱锥的所有顶点都在同一球面上,它们的底面边长为2,体积的比值为$\frac{1}{2}$,则该球的表面积为9π.

查看答案和解析>>

科目: 来源: 题型:选择题

18.某校安排四个班到三个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有(  )
A.24B.36C.48D.60

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知四面体ABCD的一条棱长为a,其余各棱长均为2$\sqrt{3}$,且所有顶点都在表面积为20π的球面上,则a的值等于(  )
A.3$\sqrt{3}$B.2$\sqrt{5}$C.3$\sqrt{2}$D.3

查看答案和解析>>

科目: 来源: 题型:填空题

16.对于非零实数a,b,c,以下四个命题都成立:
①(a+b)2=a2+2a•b+b2;  
②若a•b=a•c,则b=c;
③(a+b)•c=a•c+b•c;      
④(a•b)•c=a•(b•c);
那么类比于此,对于非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,相应命题仍然成立的所有序号是①③.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在直角坐标系xOy中,已知⊙O的方程x2+y2=4,直线l:x=4,在以O为极点,x轴的正半轴为极轴的极坐标系中,过极点作射线交⊙O于A,交直线l于B.
(1)写出⊙O及直线l的极坐标方程;
(2)设AB中点为M,求动点M的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:选择题

14.下面给出了四个类比推理,结论正确的是(  )
①由若a,b,c∈R则(ab)c=a(bc);类比推出:若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个向量则($\overrightarrow{a}$$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$$\overrightarrow{c}$)
②在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则$\frac{AG}{GD}$=2;类比推出:在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则$\frac{AO}{OM}$=3.
③a,b为实数,若a2+b2=0则a=b=0;类比推出:z1,z2为复数,若z12+z22=0则z1=z2
④若数列{an}是等差数列,对于bn=$\frac{1}{n}({a_1}$+a2+…+an),则数列{bn}也是等差数列;类比推出:若数列{cn}是各项都为正数的等比数列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,则数列{dn}也是等比数列.
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目: 来源: 题型:选择题

13.下面几种推理是类比推理的是(  )
①由直角三角形、等腰三角形、等边三角形内角和是180°,得出所有三角形的内角和都是180°;
②由f(x)=cosx,满足f(-x)=f(x),x∈R,得出f(x)=cosx是偶函数;
③由正三角形内一点到三边距离之和是一个定值,得出正四面体内一点到四个面距离之和是一个定值.
A.①②B.C.①③D.②③

查看答案和解析>>

科目: 来源: 题型:选择题

12.下面给出了四个类比推理.
①a,b为实数,若a2+b2=0则a=b=0;类比推出:z1、z2为复数,若z12+z22=0,则z1=z2=0.
②若数列{an}是等差数列,bn=$\frac{1}{n}$(a1+a2+a3+…+an),则数列{bn}也是等差数列;类比推出:若数列{cn}是各项都为正数的等比数列,dn=$\root{n}{{c}_{1}•{c}_{2}•{c}_{3}•…•{c}_{n}}$,则数列{dn}也是等比数列.
③若a、b、c∈R.则(ab)c=a(bc);类比推出:若$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$为三个向量.则($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$与$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)
④若圆的半径为a,则圆的面积为πa2;类比推出:若椭圆的长半轴长为a,短半轴长为b,则椭圆的面积为πab.
上述四个推理中,结论正确的是(  )
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目: 来源: 题型:选择题

11.在平面几何中,已知三角形ABC的面积为S,周长为L,求三角形内切圆半径时,可用如下方法,设圆O为内切圆圆心,则S=S△OAB+S△OBC+S△OAC=$\frac{1}{2}$r|AB|+$\frac{1}{2}$r|BC|+$\frac{1}{2}$r|AC|=$\frac{1}{2}$rL,∴r=$\frac{2S}{L}$
类比此类方法,已知三棱锥的体积为V,表面积为S,各棱长之和为L,则内切球半径r为(  )
A.$\frac{2V}{S}$B.$\frac{2V}{L}$C.$\frac{3V}{S}$D.$\frac{3V}{L}$

查看答案和解析>>

同步练习册答案