相关习题
 0  230171  230179  230185  230189  230195  230197  230201  230207  230209  230215  230221  230225  230227  230231  230237  230239  230245  230249  230251  230255  230257  230261  230263  230265  230266  230267  230269  230270  230271  230273  230275  230279  230281  230285  230287  230291  230297  230299  230305  230309  230311  230315  230321  230327  230329  230335  230339  230341  230347  230351  230357  230365  266669 

科目: 来源: 题型:填空题

20.过球O表面上一点A引三条长度相等的弦AB、AC、AD,且两两夹角都为60°,若球半径为R,求弦AB的长度$\frac{2\sqrt{6}}{3}$R.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=x3+ax2+bx+a2(ab∈R)
(1)若函数f(x)在x=1处有极值10,求b的值;
(2)若对任意a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.当n为正整数时,区间In=(n,n+1),an表示函数f(x)=$\frac{1}{3}$x3-x在In上函数值取整数值的个数,当n>1时,记bn=an-an-1.当x>0,g(x)表示把x“四舍五入”到个位的近似值,如g(0.48)=0,g($\sqrt{2}$)=1,g(2.76)=3,g(4)=4,…,当n为正整数时,cn表示满足g($\sqrt{k}$)=n的正整数k的个数.
(Ⅰ)求b2,c2
(Ⅱ) 求证:n>1时,bn=cn
(Ⅲ) 当n为正整数时,集合Mn={${\frac{1}{2^k}$|g($\sqrt{k}$)=n,k∈N+}中所有元素之和为Sn,记Tn=(2n+2-n)Sn,求证:T1+T2+T3+…+Tn<3.

查看答案和解析>>

科目: 来源: 题型:选择题

17.定义在(0,+∞)上的函数f(x)满足f(x)>0,且2f(x)<xf′(x)<3f(x)对x∈(0,+∞)恒成立,其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=(2-a)(x-1)-2lnx,(a∈R).
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,$\frac{1}{3}$)上无零点,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

15.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=$\frac{1}{12}$×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为(  )
A.3B.3.14C.3.2D.3.3

查看答案和解析>>

科目: 来源: 题型:选择题

14.某几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )
A.8 cm3B.12 cm3C.$\frac{32}{3}$ cm3D.$\frac{40}{3}$ cm3

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=alnx+bx2+x(a,b∈R).
(1)若a=-1,b=0,求f(x)的最小值;
(2)若f(1)=f′(1)=0,求f(x)的单调递减区间;
(3)若a=b=1,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明x1+x2≥$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知a,b是正实数,且a+b=2,则$\frac{1}{2a}$+$\frac{1}{2b}$的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

11.若正数a,b满足ab=a+b+8,则ab的最值范围为(  )
A.[2,+∞)B.(-∞,2]C.(-∞,16]D.[16,+∞)

查看答案和解析>>

同步练习册答案