相关习题
 0  230204  230212  230218  230222  230228  230230  230234  230240  230242  230248  230254  230258  230260  230264  230270  230272  230278  230282  230284  230288  230290  230294  230296  230298  230299  230300  230302  230303  230304  230306  230308  230312  230314  230318  230320  230324  230330  230332  230338  230342  230344  230348  230354  230360  230362  230368  230372  230374  230380  230384  230390  230398  266669 

科目: 来源: 题型:填空题

16.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,依次为正视图(主视图),侧视图(左视图),俯视图,则此几何体的表面积为9+9$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.在平面直角坐标系中,定义两点P(x1,y1)与Q(x2,y2)之间的“直角距离”为:d(P,Q)=|x1-x2|+|y1-y2|.现给出下列4个命题:
①已知P(1,2),Q(cos2θ,sin2θ)(θ∈R),则d(P,Q)为定值;
②已知P,Q,R三点不共线,则必有d(P,Q)+d(Q,R)>d(P,R);
③用|PQ|表示P,Q两点之间的距离,则|PQ|≥$\frac{\sqrt{2}}{2}$d(P,Q);
④若P,Q是圆x2+y2=2上的任意两点,则d(P,Q)的最大值为4;
则下列判断正确的为(  )
A.命题①,②均为真命题B.命题②,③均为假命题
C.命题②,④均为假命题D.命题①,③,④均为真命题

查看答案和解析>>

科目: 来源: 题型:解答题

14.若数列An:a1、a2、…an(n≥2)满足|ak+1-ak|=d>0(k=1,2,…,n-1),则称An为F数列,并记S(An)=a1+a2+…+an
(1)写出所有满足a1=0,S(A4)≤0的F数列A4
(2)若a1=-1,n=2016,证明:F数列是递减数列的充要条件是an=-2016d;
(3)对任意给定的正整数n(n≥2),且d∈N*,是否存在a1=0的F数列An,使得S(An)=0?如果存在,求出正整数n满足的条件,如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

13.一个正方体两个平面分别截去一部分后,剩余几何体的三视图如图所示,则该几何体的体积是(  )
A.27B.18C.9D.6

查看答案和解析>>

科目: 来源: 题型:选择题

12.从一个棱长为1的正方体中切去一部分,得到一个几何体,某三视图如图,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:填空题

11.如图,在四面体ABCD中,DA=DB=DC=2,DA⊥DB,DA⊥DC,且DA与平面ABC所成角的余弦值为$\frac{\sqrt{6}}{3}$,则该四面体外接球半径R=$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是(  )
A.4B.2C.$4+2\sqrt{5}$D.$2+\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知四面体P-ABC的所有顶点都在球O的球面上,PC为球O的直径,且球的体积为$\frac{4π}{3}$,AC=BC=1,AB=$\sqrt{3}$.则此四面体的表面积为(  )
A.$\sqrt{3}$B.$\frac{3\sqrt{3}}{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知点P1(-2,3),P2(0,1),圆C是以P1P2的中点为圆心,$\frac{1}{2}$|P1P2|为半径的圆.
(Ⅰ)若圆C的切线在x轴和y轴上截距相等,求切线方程;
(Ⅱ)若P(x,y)是圆C外一点,从P向圆C引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

7.函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)相邻两个对称轴的距离为$\frac{π}{2}$,以下哪个区间是函数f(x)的单调减区间(  )
A.[-$\frac{π}{3}$,0]B.$[\frac{π}{12},\frac{7π}{12}]$C.[0,$\frac{π}{3}$]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

同步练习册答案