相关习题
 0  230226  230234  230240  230244  230250  230252  230256  230262  230264  230270  230276  230280  230282  230286  230292  230294  230300  230304  230306  230310  230312  230316  230318  230320  230321  230322  230324  230325  230326  230328  230330  230334  230336  230340  230342  230346  230352  230354  230360  230364  230366  230370  230376  230382  230384  230390  230394  230396  230402  230406  230412  230420  266669 

科目: 来源: 题型:填空题

14.在我国南宋数学家杨辉所著的《详解》(1261年)一书中,用如图(1)的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士•帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”( Chinese triangle)如图(1),17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图(2).在杨辉三角中相邻两行满足关系式:Cnr+Cnr+1=Cn+1r+1,其中n是行数,r∈N.请类比上式,在莱布尼兹三角中相邻两行满足的关系式是$\frac{1}{{C_{n+1}^1C_n^r}}=\frac{1}{{C_{n+2}^1C_{n+1}^r}}+\frac{1}{{C_{n+2}^1C_{n+1}^{r+1}}}$

查看答案和解析>>

科目: 来源: 题型:填空题

13.在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优,若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影,已知共有5部微电影参展,如果某部电影不亚于其他4部,就称此部电影为优秀影片,那么在这5部微电影中,最多可能有5部优秀影片.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-2,0),点P(0,y0)满足|PA|=|PB|,且$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求y0的值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优.若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影,已知共有10部微电影参展,如果某部电影不亚于其他9部,就称此部电影为优秀影片,那么在这10部微电影中,最多可能有10部优秀影片.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}的通项公式an=2n-(-1)n,n∈N*.设an1,an2,…,ant(其中n1<n2<…<nt,t∈N*)成等差数列.
(1)若t=3.
①当n1,n2,n3为连续正整数时,求n1的值;
②当n1=1时,求证:n3-n2为定值;
(2)求t的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.定义“等和数列”:在一个数列,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,则a18的值为3.

查看答案和解析>>

科目: 来源: 题型:选择题

8.某几何体的三视图如图所示,若该几何体的体积为5$\sqrt{11}$,则俯视图中线段的长度x的值是(  )
A.6B.4$\sqrt{11}$C.5D.2$\sqrt{13}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.设G是一个非空集合,*是定义在G上的一个运算.如果同时满足下述四个条件:
(ⅰ)对于?a,b∈G,都有a*b∈G;
(ⅱ)对于?a,b,c∈G,都有(a*b)*c=a*(b*c);
(iii)对于?a∈G,?e∈G,使得a*e=e*a=a;
(iv)对于?a∈G,?a'∈G,使得a*a′=a′*a=e(注:“e”同(iii)中的“e”).
则称G关于运算*构成一个群.现给出下列集合和运算:
①G是整数集合,*为加法;②G是奇数集合,*为乘法;③G是平面向量集合,*为数量积运算;④G是非零复数集合,*为乘法.其中G关于运算*构成群的序号是①④(将你认为正确的序号都写上).

查看答案和解析>>

科目: 来源: 题型:填空题

6.过椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的右焦点F任作一条倾斜角不等于90°的直线交该椭圆于M,N两点,弦MN的垂直平分线交x轴于点P,则$\frac{{|{PF}|}}{{|{MN}|}}$=$\frac{2}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.点P为△ABC平面上一点,有如下三个结论:
②若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的重心;
②若sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的内心;
③若sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的外心.
回答以下两个小问:
(1)请你从以下四个选项中分别选出一项,填在相应的横线上.
A.重心  B.外心  C.内心  D.重心
(2)请你证明结论③

查看答案和解析>>

同步练习册答案