相关习题
 0  230245  230253  230259  230263  230269  230271  230275  230281  230283  230289  230295  230299  230301  230305  230311  230313  230319  230323  230325  230329  230331  230335  230337  230339  230340  230341  230343  230344  230345  230347  230349  230353  230355  230359  230361  230365  230371  230373  230379  230383  230385  230389  230395  230401  230403  230409  230413  230415  230421  230425  230431  230439  266669 

科目: 来源: 题型:填空题

6.y=x+$\sqrt{9-{x}^{2}}$的值域为[-3,3$\sqrt{2}$].

查看答案和解析>>

科目: 来源: 题型:填空题

5.过点P(1,t)作曲线y=x3-3x的切线,若这样的切线恰好能做2条,则实数t的值为-3或-2.

查看答案和解析>>

科目: 来源: 题型:填空题

4.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质Q.设f(x)在[1,3]上具有性质Q,现给出如下命题:
①若f(x)在x=2处取得最小值1,则f(x)=1,x∈[1,3];
②对任意x1,x2,x3,x4∈[1,3]有f($\frac{x{\;}_{1}+x{\;}_{2}+x{\;}_{3}+x{\;}_{4}}{4}$)≥$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)]
③f(x)在[1,3]上的图象是连续不断的;
④f(x2)在[1,$\sqrt{3}$]上具有性质Q;
其中真命题的序号是①②.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知tan2α=tan2β+1,求证:sin2β=2-$\frac{1}{si{n}^{2}α}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.把下列由描述法表示的集合转化为列举法:
(1)A={(x,y)|x+y=6,x∈N,y∈N};
(2)B={x|$\frac{6}{3-x}$∈N,x∈N};
(3)C={y|y=-x2+6,x∈N,y∈N}.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图,在平行四边形OABC中,点E,F分别在AB,BC上,且满足AB=2AE,BC=3CF.若$\overrightarrow{OB}$=λ$\overrightarrow{OE}$+μ$\overrightarrow{OF}$(λ、μ∈R),则λ+μ=$\frac{7}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设E为?ABCD所在平面内一点,满足$\overrightarrow{CE}$=$\frac{1}{2}$$\overrightarrow{ED}$,则$\overrightarrow{AE}$=(  )
A.$\frac{5}{6}$$\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{BD}$B.$\frac{1}{6}$$\overrightarrow{AC}$+$\frac{5}{6}$$\overrightarrow{BD}$C.-$\frac{5}{6}$$\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{BD}$D.$\frac{5}{6}$$\overrightarrow{AC}$-$\frac{1}{6}$$\overrightarrow{BD}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.某单位有200人,其中100人经常参加体育锻炼,其余人员视为不参加体育锻炼.在一次体检中,分别对经常参加体育锻炼的人员与不参加体育锻炼的人员进行检查.按照身体健康与非健康人数统计后,构成如下不完整的2×2列联表:
健康非健康总计
经常参加体育锻炼p
不参加体育锻炼q100
总计200
已知p是(1+2x)5展开式中的第三项系数,q是(1+2x)5展开式中的第四项的二项式系数.
(Ⅰ)求p与q的值;
(Ⅱ)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“身体健康与经常参加体育锻炼有关”.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知各项均不为0的数列{an}满足a1=a,a2=b,且an2=an-1an+1+λ(n≥2,n∈N),其中λ∈R.
(1)若λ=0,求证:数列{an}是等比数列;
(2)求证:数列{an}是等差数列的充要条件是λ=(b-a)2
(3)若数列{bn}为各项均为正数的等比数列,且对任意的n∈N*,满足bn-an=1,求证:数列{(-1)nanbn}的前2n项和为常数.

查看答案和解析>>

科目: 来源: 题型:解答题

17.2016年春节,“抢红包”称为社会热议的话题之一,某机构对春节期间用户利用手机“抢红包”的情况进行调查,如果一天内抢红包的总次数超过10次为“关注点高”,否则为“关注点低”,调查情况如表所示:
  关注点高关注点低  总计
 男性用户 x 5 
 女性用户 7 y 8
 总计 10 16 
(Ⅰ)填写如表中x、y的值并判断是否有95%以上的把握认为性别与关注点高低有关?
(Ⅱ)现要从上述男性用户中随机选出3名参加一项活动,以X表示选中的同学中抢红包总次数超过10次的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

同步练习册答案