相关习题
 0  230254  230262  230268  230272  230278  230280  230284  230290  230292  230298  230304  230308  230310  230314  230320  230322  230328  230332  230334  230338  230340  230344  230346  230348  230349  230350  230352  230353  230354  230356  230358  230362  230364  230368  230370  230374  230380  230382  230388  230392  230394  230398  230404  230410  230412  230418  230422  230424  230430  230434  230440  230448  266669 

科目: 来源: 题型:解答题

16.己知函数f(x)=x2+(a+1)x+b
(1)若函数在[1,+∞)上单调递增,求实数a的取值范围;
(2)函数f(x)的图象过点(3,3)且满足f(x)≥x恒成立,求实数a,b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=ax2-bx+2,且f(x)<0的解集为(1,2).
(1)求f(x)的解析式;
(2)求f(x)在区间[-1,3]上的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

14.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
合    计
爱好402060
不爱好203050
合    计6050110
根据上述数据能得出的结论是(  )
(参考公式与数据:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.当X2>3.841时,有95%的把握说事件A与B有关;当X2>6.635时,有99%的把握说事件A与B有关; 当X2<3.841时认为事件A与B无关.)
A.有99%的把握认为“爱好该项运动与性别有关”
B.有99%的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数f(x)=ex-2x,则下列直线是曲线y=f(x)的切线的是(  )
A.x+y+1=0B.x-y+1=0C.y=2D.y=2-2ln2

查看答案和解析>>

科目: 来源: 题型:选择题

12.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

11.下列命题:
①已知a,b,m都是正数,并且a<b,则$\frac{a+m}{b+m}$>$\frac{a}{b}$;
②在△ABC中,角A,B,C的对边分别为a,b,c,若∠A=60°,a=7,b=8,则三角形有一解;
③若函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,则f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)=5;
④在等比数列{an}中,a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(其中n∈N*,q为公比);
⑤如图,在正方体ABCD-A1B1C1D1中,点M,N分别是CD,CC1的中点,则异面直线A1M与DN所成角的大小是90°.
其中真命题有①③⑤(写出所有真命题的序号).

查看答案和解析>>

科目: 来源: 题型:填空题

10.在△ABC中,角A,B,C的对边分别为a,b,c,若B=60°,且a,b,c成等比数列,则A=60度,C=60度.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知等差数列{an},a3=-a9,公差d<0,则使前n项和Sn取是最大值的项数n是(  )
A.4或5B.5或6C.6或7D.不存在

查看答案和解析>>

科目: 来源: 题型:选择题

8.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{32}{3}$B.8C.12D.$\frac{40}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在120分以上(含120分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[135,150]的学生中选两位同学,共同帮助成绩在[60,75)中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为140分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表:
分组频数频率
[60,75)20.04
[75,90)30.06
[90,105)140.28
[105,120)150.30
[120,135)AB
[135,150]40.08
合计CD

查看答案和解析>>

同步练习册答案