相关习题
 0  230272  230280  230286  230290  230296  230298  230302  230308  230310  230316  230322  230326  230328  230332  230338  230340  230346  230350  230352  230356  230358  230362  230364  230366  230367  230368  230370  230371  230372  230374  230376  230380  230382  230386  230388  230392  230398  230400  230406  230410  230412  230416  230422  230428  230430  230436  230440  230442  230448  230452  230458  230466  266669 

科目: 来源: 题型:解答题

15.随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表:
年龄(单位:岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数31012721
(Ⅰ)若以“年龄45岁为分界点”.由以上统计数据完成下面的2×2列联表,并判断是否有99%的把握认为
“使用微信交流”的态度与人的年龄有关:
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成
不赞成
合计
(Ⅱ)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率
参考数据如下:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d).

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知某几何体的三视图如图所示,该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目: 来源: 题型:选择题

13.一个几何体的三视图如图所示,则该几何体的表面积为(  )
      
A.B.C.3π+4D.2π+4

查看答案和解析>>

科目: 来源: 题型:选择题

12.某组合体的三视图如图示,则该组合体的表面积为(  )
A.$(6+2\sqrt{2})π+12$B.8(π+1)C.4(2π+1)D.$(12+2\sqrt{2})π$

查看答案和解析>>

科目: 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.20+2πB.20+6πC.14+2πD.16

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=x3-3ax-1,a≠0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)在x=-1处取得极值,且函数g(x)=f(x)-m有三个零点,求实数m的取值范围;
(Ⅲ)设h(x)=f(x)+(3a-1)x+1,证明过点P(2,1)可以作曲线h(x)的三条切线.

查看答案和解析>>

科目: 来源: 题型:填空题

9.若函数f(x)=x+1-a($\frac{x-1}{x+1}$)在x=1处取得极值,则实数a的值为2.

查看答案和解析>>

科目: 来源: 题型:选择题

8.某几何体的三视图如图所示,则该几何体的体积为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图:网格纸上的小正方形边长都为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.4B.$\frac{16}{3}$C.$\frac{20}{3}$D.8

查看答案和解析>>

科目: 来源: 题型:解答题

6.骨质疏松症被称为“静悄悄的流行病“,早期的骨质疏松症患者大多数无明显的症状,针对中学校园的学生在运动中骨折事故频发的现状,教师认为和学生喜欢喝碳酸饮料有关,为了验证猜想,学校组织了一个由学生构成的兴趣小组,联合医院检验科,从高一年级中按分层抽样的方法抽取50名同学 (常喝碳酸饮料的同学30,不常喝碳酸饮料的同学20),对这50名同学进行骨质检测,检测情况如表:(单位:人)
有骨质疏松症状无骨质疏松症状总计
常喝碳酸饮料的同学22830
不常喝碳酸饮料的同学81220
总计302050
(1)能否据此判断有97.5%的把握认为骨质疏松症与喝碳酸饮料有关?
(2)现从常喝碳酸饮料且无骨质疏松症状的8名同学中任意抽取两人,对他们今后是否有骨质疏松症状情况进行全程跟踪研究,记甲、乙两同学被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案