相关习题
 0  230309  230317  230323  230327  230333  230335  230339  230345  230347  230353  230359  230363  230365  230369  230375  230377  230383  230387  230389  230393  230395  230399  230401  230403  230404  230405  230407  230408  230409  230411  230413  230417  230419  230423  230425  230429  230435  230437  230443  230447  230449  230453  230459  230465  230467  230473  230477  230479  230485  230489  230495  230503  266669 

科目: 来源: 题型:解答题

18.如图在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=$\sqrt{2}$,AB=CC1=2,∠BCC1=$\frac{π}{4}$,点E在棱BB1上.
(1)求C1B的长,并证明C1B⊥平面ABC;
(2)若BE=λBB1,试确定λ的值,使得二面角A-C1E-C的余弦值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在底面为平行四边形的四棱锥O-ABCD中,BC⊥平面OAB,E为OB中点,OA=AD=2AB=2,OB=$\sqrt{5}$.
(1)求证:平面OAD⊥平面ABCD;
(2)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC.
(2)求证:平面MOC⊥平面VAB.
(3)求二面角C-VB-A的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在三棱锥P-ABC中,AB⊥BC,平面PAB⊥平面ABC,BC=2AB=1,PC=$\sqrt{3}$,∠PBA=$\frac{π}{4}$.
(1)求证:BC⊥PB;
(2)求二面角A-PC-B的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图所示的几何体中,2CC1=3AA1=6,CC1⊥平面ABCD,且AA1⊥平面ABCD,正方形ABCD的边长为2,E为棱A1D中点,平面ABE分别与棱C1D,C1C交于点F,G.
(Ⅰ)求证:AE∥平面BCC1
(Ⅱ)求证:A1D⊥平面ABE;
(Ⅲ)求二面角D-EF-B的大小,并求CG的长.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示,45°的二面角的棱上有两点A,B,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AC=1,AB=$\sqrt{3}$,BD=$\sqrt{2}$,求CD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,三棱锥P-ABC中,PB⊥平面ABC,PB=BC=CA=4,∠BCA=90°,E为PC的中点.
(1)求证:BE⊥平面PAC;
(2)求二面角E-AB-C的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2$\sqrt{3}$,M为AB的中点.
(1)求证:AC⊥SB;
(2)求二面角S-CM-A的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB的北面建一个垃圾发电厂P.垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大).现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?

查看答案和解析>>

科目: 来源: 题型:解答题

9.四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E,G分别是BC,PE的中点
(1)求证:AD⊥PE
(2)求二面角E-AD-G的余弦值.

查看答案和解析>>

同步练习册答案