相关习题
 0  230316  230324  230330  230334  230340  230342  230346  230352  230354  230360  230366  230370  230372  230376  230382  230384  230390  230394  230396  230400  230402  230406  230408  230410  230411  230412  230414  230415  230416  230418  230420  230424  230426  230430  230432  230436  230442  230444  230450  230454  230456  230460  230466  230472  230474  230480  230484  230486  230492  230496  230502  230510  266669 

科目: 来源: 题型:解答题

8.如图,E是矩形ABCD中AD边上的点,F是CD上的点,AB=AE=$\frac{2}{3}$AD=4,现将△ABE沿BE边折至△PBE位置,并使平面PBE⊥平面BCDE,且平面PBE⊥平面PEF.
(1)求$\frac{DF}{FC}$的比值;
(2)求二面角E-PB-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)证明PC⊥AD;
(2)求二面角A-PC-D的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任意一点.
(1)求$\frac{y-2}{x-1}$的最大值和最小值;
(2)求x-2y的最大值和最小值;
(3)求(x-1)2+(y-1)2的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M-QB-C为30°,求线段PM与线段MC的比值t.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2-t\\ y=\sqrt{3}t\end{array}\right.,(t为参数)$,当t=-1时,对应曲线C1上一点A,且点A关于原点的对称点为B.以原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{6}{{\sqrt{9+3{{sin}^2}θ}}}$.
(1)求A,B两点的极坐标;
(2)设P为曲线C2上的动点,求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.对于函数f(x),在给定区间[a,b]内任取n+1(n≥2,n∈N*)个数x0,x1,x2,…,xn,使得
a=x0<x1<x2<…<xn-1<xn=b,记S=$\sum_{i=0}^{n-1}$|f(xi+1)-f(xi)|.若存在与n及xi(i≤n,i∈N)均无关的正数A,使得S≤A恒成立,则称f(x)在区间[a,b]上具有性质V.
(1)若函数f(x)=-2x+1,给定区间为[-1,1],求S的值;
(2)若函数f(x)=$\frac{x}{{e}^{x}}$,给定区间为[0,2],求S的最大值;
(3)对于给定的实数k,求证:函数f(x)=klnx-$\frac{1}{2}$x2 在区间[1,e]上具有性质V.

查看答案和解析>>

科目: 来源: 题型:填空题

2.某电子设备的锁屏图案设计的操作界面如图1所示,屏幕解锁图案的设计规则如下:从九个点中选择一个点为起点,手指依次划过某些点(点的个数在1到9个之间)就形成了一个线路图(线上的点只有首次被划到时才起到确定线路的作用,即第二次划的点不会成为确定折线的点,如图1的点P,线段AB尽管过P,但是由A,B两点确定的),这个线路图就形成一个屏幕解锁图案,则下面所给线路图2中可以成为屏幕解锁图案的序号是①②.

查看答案和解析>>

科目: 来源: 题型:选择题

1.某电子设备的锁屏图案设计的如图1所示,屏幕解锁图案的设计规划如下:从九个点中选择一个点为起点,手指依次划过某些点(点的个数在1到9个之间)就形成了一个路线图(线上的点只有首次被划到时才起到确定线路的作用,即第二次划过的点不会成为确定折线的点,如图1中的点P,线段AB尽管过P,但是由A、B两点确定),这个线路图就形成了一个屏幕解锁图案,则图2所给线路图中可以成为屏幕解锁图案的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知地球的半径为6371千米,上海位于约东经121°,北纬31°,台北的位置约为东经121°,北纬25°,则两个城市之间的球面距离约为667千米(结果精确到1千米)

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,三棱锥A-BCD中,△ABC和△BCD所在平面互相垂直,且BC=BD=4,AC=4$\sqrt{2}$,CD=4$\sqrt{3},∠ACB={45°}$,E,F分别为AC,DC的中点.
(Ⅰ)求证:平面ABD⊥平面BCD;
(Ⅱ)求二面角E-BF-C的正弦值.

查看答案和解析>>

同步练习册答案