相关习题
 0  230347  230355  230361  230365  230371  230373  230377  230383  230385  230391  230397  230401  230403  230407  230413  230415  230421  230425  230427  230431  230433  230437  230439  230441  230442  230443  230445  230446  230447  230449  230451  230455  230457  230461  230463  230467  230473  230475  230481  230485  230487  230491  230497  230503  230505  230511  230515  230517  230523  230527  230533  230541  266669 

科目: 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,点M(0,2)关于直线y=-x的对称点在椭圆C上,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A,B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得到几何体B-ACD.

(1)求证:AC⊥BD;
(2)求AB与平面BCD所成角的正切值;
(3)求二面角D-AB-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设方程ex+x=a的解为x1,方程lnx+x=a的解为x2,则|x1-x2|的最小值为(  )
A.1B.$\sqrt{2}$C.ln2D.$\sqrt{2}$ln2

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD是等腰梯形,AB∥DC,∠ADC=$\frac{π}{3}$,
PD=PC=CD=2AB=2,PB⊥BC,E为PD的中点.
(1)求证平面PBD⊥平面ABCD; 
(2i)求直线AE与底面ABCD成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

14.命题“任意的x∈R,2x4-x2+1<0”的否定是(  )
A.不存在x∈R,2x4-x2+1<0B.存在x∈R,2x4-x2+1<0
C.对任意的x∈R,2x4-x2+1≥0D.存在x∈R,2x4-x2+1≥0

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x,(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆C经过点(-1,$\frac{2\sqrt{2}}{3}$)和(2,$\frac{\sqrt{5}}{3}$),求
(1)椭圆C的标准方程;
(2)过椭圆C的上顶点B作两条互相垂直的直线分别与椭圆C相交于点P、Q,试问直线PQ是否经过定点,若经过定点请求出定点并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设函数f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x+a
(1)当a=-$\frac{3}{2}$时,求函数y=f(x)图象上在点(3,f(3))处的切线方程;
(2)若方程f(x)=0有三个不等实根,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆C的两个焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),短轴的两个端点分别为B1、B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)在(1)的条件下,过点F2的直线l与椭圆C相交于P,Q两点,且l的斜率为1,求|PQ|的长.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知f(x)=-3x2+a(6-a)x+b,a,b为实数.
(1)当b=-6时,解关于a的不等式f(1)>0;
(2)若不等式f(x)>0的解集为(-1,3),求实数a,b的值.

查看答案和解析>>

同步练习册答案