相关习题
 0  230365  230373  230379  230383  230389  230391  230395  230401  230403  230409  230415  230419  230421  230425  230431  230433  230439  230443  230445  230449  230451  230455  230457  230459  230460  230461  230463  230464  230465  230467  230469  230473  230475  230479  230481  230485  230491  230493  230499  230503  230505  230509  230515  230521  230523  230529  230533  230535  230541  230545  230551  230559  266669 

科目: 来源: 题型:解答题

4.已知函数f(x)=e2x-(x-1)2,(e≈2.71828)
(1 )求曲线y=f(x)在点(l,f(1))处的切线方程;
(2)设方程f(x)=m-1+4x-x2在[-1,2]上恰有两个不同的实根,求变数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知定义在R上的连续函数g(x)满足:①当x>0时,g′(x)>0恒成立(g′(x)为函数g(x)的导函数);②对任意的x∈R都有g(x)=g(-x),又函数f(x)满足:对任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.当$x∈[-\sqrt{3},\sqrt{3}]$时,f(x)=x3-3x.若关于x的不等式g[f(x)]≤g(a2-a+2)对?x∈[-$\sqrt{3}$,$\frac{3}{2}+2\sqrt{3}$]恒成立,则a的取值范围是(  )
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

查看答案和解析>>

科目: 来源: 题型:选择题

2.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示,现从这20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)=(  )
A.$\frac{5}{6}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{5}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,点M,N分别在PB,PC上,且MN∥BC.
(Ⅰ)证明:平面AMN⊥平面PBA;
(Ⅱ)若M为PB的中点,且PA=1,求点D到平面AMC的距离.

查看答案和解析>>

科目: 来源: 题型:填空题

20.设x,y满足约束条件$\left\{\begin{array}{l}y≤x+1\\ x+y≤2\\ 0≤x≤\frac{3}{2}\\ y≥0\end{array}\right.$,则z=2x+y的最大值是$\frac{7}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.在区间[-2,2]内任取一个整数x,在区间[0,4]内任取一个整数y,则y≥x2的概率等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=$\frac{2}{x}$+3lnax-x,g(x)=xex+cosx(a≠0).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)若?x1∈[1,2],x2∈[0,3],使得f($\begin{array}{l}{x_1}\end{array}$)>g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若2$\sqrt{2}$是b-1,b+1的等比中项,则b=±3.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)<$\frac{1}{3}$,则f(x)<$\frac{x}{3}+\frac{2}{3}$的解集为(1,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

15.从高一年级1500名学生中的某次数学考试成绩(单位:分)中抽取部分学生的成绩,得到频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)若以成绩不低于80分为“优秀”,估计全年级成绩为“优秀”的学生人数;
(Ⅲ)估计这次考试全年级的平均分(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

同步练习册答案