相关习题
 0  230398  230406  230412  230416  230422  230424  230428  230434  230436  230442  230448  230452  230454  230458  230464  230466  230472  230476  230478  230482  230484  230488  230490  230492  230493  230494  230496  230497  230498  230500  230502  230506  230508  230512  230514  230518  230524  230526  230532  230536  230538  230542  230548  230554  230556  230562  230566  230568  230574  230578  230584  230592  266669 

科目: 来源: 题型:解答题

20.已知函数f(x)=(sinx+cosx)2+2cos2x-2.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

19.某车间为了制定工时定额,需要确定加工零件抽用时间,为此做了四次试验,得到的数据如下:
零件个数x(个)2345
所需时间y(小时)2.5344.5
(1)画出散点图;
(2)求出回归方程;
(3)根据回归方程估计加工10个零件需要多少个小时.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目: 来源: 题型:选择题

18.为庆祝冬奥申办成功,随机调查了500名性别不同的大学生是否爱好某项冬季运动,提出假设H:“爱好这项运动与性别无关”,利用2×2列联表计算的K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列表述中正确的是(  )
A.有95%的把握认为“爱好这项运动与性别有关”
B.有95%的把握认为“爱好这项运动与性别无关”
C.在犯错误的概率不超过0.5%的前提下,认为“爱好这项运动与性别有关”
D.在犯错误的概率不超过0.5%的前提下,认为“爱好这项运动与性别无关”

查看答案和解析>>

科目: 来源: 题型:选择题

17.某商品的销售额y(万元)与广告费用x(万元)之间的关系统计数据如表:
广告费用X(万元)4235
销售额y(万元)492639 54
由表中数据算出线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=9.4,据此估计该商品广告费用为6万元时销售额约为(  )万元.
A.63.6B.64.2C.65.1D.65.5

查看答案和解析>>

科目: 来源: 题型:解答题

16.某商店举行三周年店庆活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖.
(1)求各会员获奖的概率;
(2)设商店抽奖环节收益为ξ元,求ξ的分布列;假如商店打算不赔钱,a最多可设为多少元?

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知变量x,y满足条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x≥-1}\\{y≤1}\end{array}\right.$,则z=3x+2y的最小值为-3.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0),离心率为$\frac{\sqrt{6}}{2}$,则该双曲线的渐近线方程为(  )
A.$\sqrt{2}x$±y=0B.x±$\sqrt{2}$y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知抛物线E:y2=2px(p>0)的焦点F恰好与圆C:x2+y2-2x=0的圆心重合,过焦点F的直线l与抛物线E交于不同的两点A,B.
(Ⅰ)求抛物线E的方程;
(Ⅱ)若O是坐标原点,试问$\overrightarrow{OA}$•$\overrightarrow{OB}$是否为一定值?若是定值,请求出,否则请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

12.如图所示,如果执行如图所示的程序框图,输入n=6,m=4,那么输出的p=2520.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,且底面ABCD为正方形,PD=DC=2,E、F、G分别是AB、PB、CD的中点.
(1)求证:EF⊥DC;
(2)求证:GF∥平面PAD;
(3)求点G到平面PAB的距离.

查看答案和解析>>

同步练习册答案