相关习题
 0  230423  230431  230437  230441  230447  230449  230453  230459  230461  230467  230473  230477  230479  230483  230489  230491  230497  230501  230503  230507  230509  230513  230515  230517  230518  230519  230521  230522  230523  230525  230527  230531  230533  230537  230539  230543  230549  230551  230557  230561  230563  230567  230573  230579  230581  230587  230591  230593  230599  230603  230609  230617  266669 

科目: 来源: 题型:填空题

4.在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2,c=3,cosB=$\frac{1}{4}$,则sinC的值为$\frac{3\sqrt{6}}{8}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.将函数y=sinx的图象向左平移$\frac{π}{4}$个单位,再向上平移2个单位,则所得的图象的函数解析式是$y=sin(x+\frac{π}{4})+2$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.设函数f(x)=ex-a(x-1).
(1)求函数f(x)的单调区间和极值;
(2)当a>0时,若函数f(x)在区间(0,2]上存在唯一零点,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x>2}\\{lo{g}_{\frac{1}{2}}(\frac{9}{4}-x)+{a}^{2},x≤2}\end{array}\right.$,若f(x)的值域为R,则实数a的取值范围是(-∞,-1]∪[2,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

20.在($\frac{x}{2}$-$\frac{1}{\root{3}{x}}$)n的展开式中,只有第7项的二项式系数最大,则展开式常数项是(  )
A.$\frac{55}{2}$B.-$\frac{55}{2}$C.-28D.28

查看答案和解析>>

科目: 来源: 题型:选择题

19.有一段“三段论”推理是这样的:对于定义域内可导函数f(x),如果f′(x)>0,那么f(x)在定义域内单调递增;因为函数f(x)=-$\frac{1}{x}$满足在定义域内导数值恒正,所以,f(x)=-$\frac{1}{x}$在定义域内单调递增,以上推理中(  )
A.大前提错误B.小前提错误C.推理形式错误D.结论正确

查看答案和解析>>

科目: 来源: 题型:选择题

18.设直线y=x与曲线y=x3所围成的封闭图形的面积为S,某同学给出了关于S的以下五种表示:
①S=${∫}_{0}^{1}$(x-x3)dx ②S=2${∫}_{-1}^{0}$(x3-x)dx③S=${∫}_{-1}^{1}$(x-x3)dx④S=${∫}_{-1}^{0}$(x3-x)dx+${∫}_{0}^{1}$(x-x3)dx⑤${∫}_{-1}^{1}$|x-x3|dx,
其中表示正确的序号是(  )
A.①③B.④⑤C.②④⑤D.②③④⑤

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知A(x1,y1),B(x2,y2)是函数f(x)=$\left\{\begin{array}{l}{\frac{2x}{1-2x},x≠\frac{1}{2}}\\{-1,x=\frac{1}{2}}\end{array}\right.$的图象上的任意两点(可以重合),点M在直线x=$\frac{1}{2}$上,且$\overrightarrow{AM}$=$\overrightarrow{MB}$.
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,当n≥2时,Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+f($\frac{3}{n}$)+…+f($\frac{n-1}{n}$),求Sn

查看答案和解析>>

科目: 来源: 题型:选择题

16.如果a<b<0,那么下列不等式成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.ab<b2C.ac2<bc2D.a2>ab>b2

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=lnx-$\frac{1}{2}$ax2+(1-a)x,其中a∈R,f(x)的导函数是f′(x).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)在曲线y=f(x)的图象上是否存在不同的两点A(x1,y1),B(x2,y2)(x1≠x2),使得直线AB的斜率k=f′($\frac{{x}_{1}+{x}_{2}}{2}$)?若存在,求出x1与x2的关系;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案