相关习题
 0  230442  230450  230456  230460  230466  230468  230472  230478  230480  230486  230492  230496  230498  230502  230508  230510  230516  230520  230522  230526  230528  230532  230534  230536  230537  230538  230540  230541  230542  230544  230546  230550  230552  230556  230558  230562  230568  230570  230576  230580  230582  230586  230592  230598  230600  230606  230610  230612  230618  230622  230628  230636  266669 

科目: 来源: 题型:解答题

14.如图,矩形ABCD中,AB=1,BC=2,半圆O以BC为直径,平面ABCD垂直于半圆O所在的平面,P为半圆周上任意一点(与B、C不重合).
(1)求证:平面PAC⊥平面PAB;
(2)若P为半圆周中点,求此时二面角P-AC-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

13.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是(  )
A.圆柱B.圆锥C.棱锥D.棱柱

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知函数f(x)=aex-1+|x-a|-1有两个零点,则实数a的取值范围是(  )
A.[-1,1]B.[0,1]C.{-1}∪(0,1]D.{-1}∪[0,1)

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线M的方程为ρ2(1+sin2θ)=1.
(1)求曲线M的直角坐标方程;
(2)若直线l与曲线M只有一个公共点,求倾斜角α的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)证明:AC∥平面BEF;
(2)求平面BEF和平面ABCD所成锐角二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,四边形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F分别在BC,AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE=$\frac{1}{2}$,在折叠后的线段AD上是否存在一点P,且$\overrightarrow{AP}=λ\overrightarrow{PD}$,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;
(Ⅱ)求三棱锥A-CDF的体积的最大值,并求此时二面角E-AC-F的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D为BC的中点,过点D作DQ∥AP,且DQ=1,连结QB,QC,QP.
(1)证明:AQ⊥平面PBC;
(2)求二面角B-AQ-C的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(I)求证:平面AA1B1B⊥平面BB1C1C;
(II)若三棱柱ABC-A1B1C1的体积为2$\sqrt{3}$,求点A到平面A1B1C1的距离.

查看答案和解析>>

科目: 来源: 题型:选择题

6.为了解重庆某社区居民的家庭年收入和年支出的关系,随机调查了5户家庭,得到统计数据表,根据下表可得回归直线方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=0.5$,$\widehata=\overline y-\widehatb\overline x$,据此估计,该社区一户收入为18万元家庭年支出为(  )
收入x(万元)68101214
支出y(万元)678910
A.15万元B.14万元C.13万元D.12万元

查看答案和解析>>

科目: 来源: 题型:选择题

5.定义:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,若实数x,y满足:|x|≤3,|y|≤3,-4x≤y≤$\frac{2}{3}$x,则max{|3x-y|,x+2y}的取值范围是(  )
A.[$\frac{21}{4}$,7]B.[0,12]C.[3,$\frac{21}{4}$]D.[0,7]

查看答案和解析>>

同步练习册答案