相关习题
 0  230476  230484  230490  230494  230500  230502  230506  230512  230514  230520  230526  230530  230532  230536  230542  230544  230550  230554  230556  230560  230562  230566  230568  230570  230571  230572  230574  230575  230576  230578  230580  230584  230586  230590  230592  230596  230602  230604  230610  230614  230616  230620  230626  230632  230634  230640  230644  230646  230652  230656  230662  230670  266669 

科目: 来源: 题型:选择题

1.函数f(x)定义在(0,$\frac{π}{2}$)上,f′(x)是它的导函数,且tanx•f(x)>f′(x)在定义域内恒成立,则(  )
A.$\sqrt{2}$f($\frac{π}{4}$)<f($\frac{π}{3}$)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.cos1•f(1)>$\frac{\sqrt{3}}{2}$f($\frac{π}{6}$)D.$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{6}$)

查看答案和解析>>

科目: 来源: 题型:选择题

20.函数f(x)的图象如图所示,f′(x)为函数f(x)的导函数.则下列数值排序正确的是(  )
A.f′(3)<f′(4)<f(4)-f(3)<0B.f′(3)<f(4)-f(3)<f′(4)<0C.f′(4)<f(4)-f(3)<f′(3)<0D.f(4)-f(3)<f′(4)<f′(3)<0

查看答案和解析>>

科目: 来源: 题型:选择题

19.若函数f(x)=2lnx-ax在区间[2,+∞)上单调递增,则实数a的取值范围是(  )
A.[0,+∞)B.(-∞,0]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知f(x)=$\left\{\begin{array}{l}{({x+1})^2},x≤0\\|{{{log}_{\frac{1}{2}}}x}|,x>0\end{array}$.若函数g(x)=f(x)-a恰有4个零点x1,x2,x3,x4(x1<x2<x3<x4),则x1x3+x2x3+$\frac{1}{{{x_3}^2{x_4}}}$的取值范围是(  )
A.(-1,+∞)B.(-1,1]C.(-∞,1)D.[-1,1)

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为(  )
A.$\frac{20π}{3}$B.C.D.$\frac{19π}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

16.一个几何体的三视图如图所示,则此几何体的体积是80;表面积是80+8$\sqrt{13}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图,网格上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为(  )
A.12+4$\sqrt{2}$+2$\sqrt{13}$B.12+8$\sqrt{2}$+2$\sqrt{13}$C.12+4$\sqrt{2}$+2$\sqrt{26}$D.12+8$\sqrt{2}$+2$\sqrt{26}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,AB=BC=2,CD=SD=1,侧面SAB为等边三角形.
(1)证明:AB⊥SD;
(2)求二面角A-SB-C的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.函数f(x)=$\left\{{\begin{array}{l}{x-\frac{1}{x}+1,x≥1}\\{{x^2},x<1}\end{array}}$,则f(f(-1))=1;函数f(x)在区间[-2,2]上的值域是[0,4].

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在矩形ABCD中,AB=3,BC=3$\sqrt{3}$,点E、H分别是所在边靠近B、D的三等分点,现沿着EH将矩形折成直二面角,分别连接AD、AC、CB,形成如图所示的多面体.
(Ⅰ)证明:平面BCE∥平面ADH;
(Ⅱ)证明:EH⊥AC;
(Ⅲ)求二面角B-AC-D的平面角的余弦值.

查看答案和解析>>

同步练习册答案