相关习题
 0  230519  230527  230533  230537  230543  230545  230549  230555  230557  230563  230569  230573  230575  230579  230585  230587  230593  230597  230599  230603  230605  230609  230611  230613  230614  230615  230617  230618  230619  230621  230623  230627  230629  230633  230635  230639  230645  230647  230653  230657  230659  230663  230669  230675  230677  230683  230687  230689  230695  230699  230705  230713  266669 

科目: 来源: 题型:填空题

20.向量$\overrightarrow{a}$与$\overrightarrow{b}$=(1,2)满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$|=2$\sqrt{5}$,则向量$\overrightarrow{a}$=(4,-2),或(-4,2).

查看答案和解析>>

科目: 来源: 题型:选择题

19.下列向量与向量$\overrightarrow{a}$=(-4,3)垂直,且是单位向量的为(  )
A.(-4,3)B.(-3,-4)C.(-$\frac{3}{5}$,$\frac{4}{5}$)D.(-$\frac{3}{5}$,-$\frac{4}{5}$)

查看答案和解析>>

科目: 来源: 题型:选择题

18.阅读程序框图,若使输出的结果不大于11,则输入的整数i的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:选择题

17.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案有(  )种.
A.6种B.16种C.12种D.20种

查看答案和解析>>

科目: 来源: 题型:选择题

16.设10件产品中有4件不合格,从中任意取出2件,那么在所得的产品中发现有一件不合格,则另一件也是不合格品的概率(  )
A.$\frac{2}{5}$B.$\frac{2}{3}$C.$\frac{1}{15}$D.$\frac{1}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知当n∈N*时,Tn=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$,Sn=1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$.
(1)求S1,S2,T1,T2
(2)猜想Sn与Tn的大小关系,并用数学归纳法证明.

查看答案和解析>>

科目: 来源: 题型:填空题

14.下列说法中正确的是①②③.
①设随机变量X服从二项分布B(6,$\frac{1}{2}$),则P(X=3)=$\frac{5}{16}$
②对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x)
③若f′(x0)=-3,则$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-3h)}{h}$=-12
④E(2X+3)=2E(X)+3,D(2X+3)=2D(X)+3.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且过点P($\sqrt{2}$,$\frac{\sqrt{3}}{3}$).
(1)求椭圆C的方程;
(2)已知直线l:y=kx+m被圆O:x2+y2=2截得的弦长为2,且与椭圆C相交于两点A、B两点,求|AB|的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知抛物线E:y2=2px(p>0)的焦点为F,抛物线上存在一点P到其焦点的距离为$\frac{3}{2}$,且点P在圆x2+y2=$\frac{9}{4}$上.
(1)求抛物线E的方程;
(2)直线l过抛物线E的焦点F,交抛物线E于A、B两点,若$\overrightarrow{AF}$=3$\overrightarrow{BF}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线y=x+2平行,且它的焦点与椭圆$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{16}$=1的焦点重合,则双曲线的方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步练习册答案