相关习题
 0  230625  230633  230639  230643  230649  230651  230655  230661  230663  230669  230675  230679  230681  230685  230691  230693  230699  230703  230705  230709  230711  230715  230717  230719  230720  230721  230723  230724  230725  230727  230729  230733  230735  230739  230741  230745  230751  230753  230759  230763  230765  230769  230775  230781  230783  230789  230793  230795  230801  230805  230811  230819  266669 

科目: 来源: 题型:解答题

11.已知曲线C1:$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数)与曲线C2:ρ=4sinθ
(1)写出曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求曲线C1和C2公共弦的长度.

查看答案和解析>>

科目: 来源: 题型:选择题

10.通过随机询问多名性别不同的大学生是否爱好某项运动,建立列联表后,由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得:K2=7.8,附表如下:
P(K2≥K)0.0500.0100.001
K3.8416.63510.828
参照附表:得到的正确结论是(  )
A.有99%以上的把握认为“爱好该项运动与性别有关”
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知$\overrightarrow{a}$=($\frac{\sqrt{3}}{3}$sinx,2cosx),$\overrightarrow{b}$=(3,-$\frac{1}{2}$),x∈R.
(1)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,试求f(x)的值域;
(2)若x=$\frac{π}{3}$,且满足2$\overrightarrow{a}$-$\overrightarrow{b}$与$λ\overrightarrow{a}$+$\overrightarrow{b}$相互垂直,求λ的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.淘宝卖家为了解喜爱网购是否与性别有关,对买家100人进行了问卷调查得到了如表的列联表:
喜爱网购不喜爱网购合计
a=20b
cd=10
合计100
已知在全部100人中随机抽取1人抽到不爱网购的概率为$\frac{2}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99.9%的把握认为喜爱网购与性别有关,请说明理由.
参考公式:K2=$\frac{n{(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P=(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

7.某同学去年寒假期间对其30位亲友的饮食习惯作了一次调查,其中12位五十岁以下的亲友中有4位偏爱蔬菜:18位五十岁以上的亲友中有2位偏爱肉类.
(1)完成如下的2×2列联表:
偏爱蔬菜偏受肉类合计
五十岁以下
五十岁以上
合计
(2)有多大的把握认为“其亲友的饮食习惯与年龄有关”?
(3)若要从这30位亲友中抽出5人进行有关饮食习惯方面的进一步调查,该如何合量地进行抽样?
附计算公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附表:
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积为(  )
A.3B.1C.6D.4

查看答案和解析>>

科目: 来源: 题型:解答题

5.设△ABC的三个内角A,B,C所对的边分别为a,b,c且acosC+$\frac{1}{2}$c=b.
(1)求A的大小;
(2)若a=$\frac{\sqrt{3}}{2}$,求b+c的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

4.设x,y满足约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,若目标函数z=$\frac{x}{a}$+$\frac{y}{b}$(a>0,b>0)的最大值为10,则5a+4b的最小值为8.

查看答案和解析>>

科目: 来源: 题型:选择题

3.若a<b<0,则下列不等式一定成立的是(  )
A.a2c>b2c(c∈R)B.$\frac{b}{a}$>1C.lg(b-a)>0D.($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

科目: 来源: 题型:解答题

2.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
 
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取2名幸运选手,求2名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量)

查看答案和解析>>

同步练习册答案