相关习题
 0  230648  230656  230662  230666  230672  230674  230678  230684  230686  230692  230698  230702  230704  230708  230714  230716  230722  230726  230728  230732  230734  230738  230740  230742  230743  230744  230746  230747  230748  230750  230752  230756  230758  230762  230764  230768  230774  230776  230782  230786  230788  230792  230798  230804  230806  230812  230816  230818  230824  230828  230834  230842  266669 

科目: 来源: 题型:解答题

9.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=lnx-a(x-1)2-(x-1)(其中常数a∈R).
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,ABCD是正方形,O是该正方形的中心,P是平面 ABCD 外一点,PO⊥底面ABCD,E是PC的中点.
求证:(1)PA∥平面 BDE;
(2)BD⊥平面 PAC;
(3)若PB与平面PAC所成角为45°,求二面角E-BD-C的平面角.

查看答案和解析>>

科目: 来源: 题型:填空题

6.从混有5张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是$\frac{2}{17}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=$\sqrt{2}$,AC=2,A1C1=1,$\frac{BD}{DC}$=$\frac{1}{2}$.
(1)证明:平面A1AD⊥平面BCC1B1
(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

4.若函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)等于(  )
A.-1B.-eC.1D.-4e

查看答案和解析>>

科目: 来源: 题型:解答题

3.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n个三角形数为$\frac{{n({n+1})}}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数     N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形数      N(n,4)=n2
五边形数      N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六边形数      N(n,6)=2n2-n
可以推测N(n,k)的表达式,由此计算N(10,24)=1000.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k)若α∥β,则k等于(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目: 来源: 题型:选择题

1.曲线y=e-x在点(x0,$\frac{1}{e}$)处的切线与坐标轴围成的三角形面积为(  )
A.$\frac{1}{2}$e2B.$\frac{1}{e}$C.e2D.$\frac{2}{e}$

查看答案和解析>>

科目: 来源: 题型:选择题

3.设x、y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤3}\end{array}\right.$,则z=2x-3y的最小值是(  )
A.-7B.-6C.-5D.-3

查看答案和解析>>

同步练习册答案