相关习题
 0  230662  230670  230676  230680  230686  230688  230692  230698  230700  230706  230712  230716  230718  230722  230728  230730  230736  230740  230742  230746  230748  230752  230754  230756  230757  230758  230760  230761  230762  230764  230766  230770  230772  230776  230778  230782  230788  230790  230796  230800  230802  230806  230812  230818  230820  230826  230830  230832  230838  230842  230848  230856  266669 

科目: 来源: 题型:填空题

9.直线x=$\frac{π}{12}$是函数y=asin3x+cos3x的一条对称轴,则a=1.

查看答案和解析>>

科目: 来源: 题型:填空题

8.某班有56名学生,现根据学生学号,用系统抽样的方法抽取一个容量为4的样本,已知4号、32号、46号学生在样本中,那么样本中还有一个学生的学号是18号.

查看答案和解析>>

科目: 来源: 题型:解答题

7.有3个男生和3个女生.
(1)若6人站成一排,求男生甲必须站在两端的排法数;
(2)若6人站成前后两排,每排3人,求前排恰有一位女生的排法数.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在二项式(x+$\frac{3}{x}$)n的展开式中,各项系数之和为A,各项二项式系数之和为B,且A=64B,求二项式(x+$\frac{3}{x}$)n的展开式中的常数项.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=x2-2alnx(a∈R),g(x)=2ax.
(1)求函数f(x)的极值;
(2)若a>0,函数h(x)=f(x)-g(x)有且只有一个零点,求实数a的值;
(3)若0<a<1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.定义在[a,b]上的函数f(x),若存在x0∈(a,b)使得f(x)在[a,x0]上单调递增,在[x0,b]上单调递减,则称f(x)为[a,b]上的单峰函数,x0为峰点.
(1)若f(x)=-x3+3x,则f(x)是否为[0,2]上的单峰函数,若是,求出峰点;若不是,说明理由;
(2)若g(x)=m•4x+2x在[-1,1]上不是单峰函数,求实数m的取值范围;
(3)若h(x)=|x2-1|+n|x-1|在[-2,2]上为单峰函数,求负数n的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知复数z=1-i.
(1)设w=z(1+i)-1-3i,求|w|;
(2)如果$\frac{{z}^{2}+az+b}{1+i}$=i,求实数a,b的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.设函数f(x)=$\frac{2x}{x+1}$(x>0),观察:
f1(x)=f(x)=$\frac{2x}{x+1}$,
f2(x)=f(f1(x))=$\frac{4x}{3x+1}$,
f3(x)=f(f2(x))=$\frac{8x}{7x+1}$,
f(x)=f(f3(x))=$\frac{16x}{15x+1}$,

根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=$\frac{{2}^{n}x}{({2}^{n}-1)x+1}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.学校为绿化环境,移栽了香樟树3株.设香樟树移栽的成活率为$\frac{2}{3}$,且各株大树是否成活互不影响.则移栽的3株大树中至少成活2株的概率为$\frac{20}{27}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.若函数y=f(x)的定义域为[-1,1],求函数y=f(x+$\frac{1}{2}$)•f(x-$\frac{1}{2}$)的定义域为[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案