相关习题
 0  230671  230679  230685  230689  230695  230697  230701  230707  230709  230715  230721  230725  230727  230731  230737  230739  230745  230749  230751  230755  230757  230761  230763  230765  230766  230767  230769  230770  230771  230773  230775  230779  230781  230785  230787  230791  230797  230799  230805  230809  230811  230815  230821  230827  230829  230835  230839  230841  230847  230851  230857  230865  266669 

科目: 来源: 题型:解答题

13.如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.
(1)求证:BC2=AC•BP;
(2)若EC=2$\sqrt{5}$,求EA的长.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知n阶矩阵A满足A2=A,证明:A=I或detA=0.

查看答案和解析>>

科目: 来源: 题型:选择题

11.函数f(x)=log2x-4+2x的零点位于区间(  )
A.(3,4)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数f(x)=2x-lnx的单调递减区间为(  )
A.$(0,\frac{1}{2})$B.(0,+∞)C.$(\frac{1}{2},+∞)$D.$(-∞,\frac{1}{2})$

查看答案和解析>>

科目: 来源: 题型:选择题

9.在平面直角坐标系中,已知点A(-1,3),B(3,-3),沿x轴把坐标平面折成60°的二面角后线段AB的长度为(  )
A.5B.7C.2$\sqrt{13}$D.$\sqrt{19}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且$∠BCD=∠BCE=\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2
(Ⅰ)证明:AG∥平面BDE;
(Ⅱ)求平面BDE和平面BAG所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF∥AB,AF⊥CF.
(Ⅰ)若G为FC的中点,证明:AF∥平面BDG;
(Ⅱ)求平面ABF与平面BCF夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD‖BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=AD=2,BC=1,CD=$\sqrt{3}$.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设PM=t•MC,试确定t的值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM
(Ⅰ)求证:AD⊥BM
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E-AM-D的余弦值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,四棱锥P-ABCD的底面是菱形,∠ABC=60°,PA⊥底面ABCD,E,F分别是BC,PC的中点,点H在PD上,且EH⊥PD,PA=AB=2.
(1)求证:EH∥平面PBA;
(2)求平面FAH与平面EAH所成二面角的余弦值.

查看答案和解析>>

同步练习册答案