相关习题
 0  230793  230801  230807  230811  230817  230819  230823  230829  230831  230837  230843  230847  230849  230853  230859  230861  230867  230871  230873  230877  230879  230883  230885  230887  230888  230889  230891  230892  230893  230895  230897  230901  230903  230907  230909  230913  230919  230921  230927  230931  230933  230937  230943  230949  230951  230957  230961  230963  230969  230973  230979  230987  266669 

科目: 来源: 题型:选择题

6.某几何体的三视图如图,则该几何体的表面积为(  )
A.16+$\frac{4}{3}$πB.38+4πC.40+πD.40+4π

查看答案和解析>>

科目: 来源: 题型:解答题

5.一个几何体的三视图如图所示(单位:m),求该几何体的体积和表面积.(V圆锥体=$\frac{1}{3}$Sh,V圆柱体=Sh)

查看答案和解析>>

科目: 来源: 题型:选择题

4.找出图中三视图所对应的实物图形是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

3.直角梯形ABEF中,BE∥AF,∠FAB=90°,AF=$\frac{3}{2}$BE=3AB=3,C,D分别是边BE,AF上的点(不是端点),且CD⊥AF,如图1所示;现沿CD把直角梯形ABEF折成一个120°的二面角,连接部分线段后围成一个空间几何体,如图2所示.
(1)求证:BE∥平面ADF;
(2)当四棱锥F-ABCD体积最大时,求平面ADF与平面BEF所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知某三棱锥的正视图和俯视图如图所示,则此三棱锥的体积为(  )
A.$\frac{{\sqrt{2}}}{12}$B.$\frac{{\sqrt{3}}}{12}$C.$\frac{1}{8}$D.$\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在四边形ABCD中,AB=AD=4,BC=CD=$\sqrt{7}$,点E为线段AD上的一点.现将△DCE沿线段EC翻折到PEC(点D与点P重合),使得平面PAC⊥平面ABCE,连接PA,PB.
(I)证明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且点E为线段AD的中点,求二面角P-AB-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,四棱锥P-ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点F
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)若ABCD为正方形,探究在什么条件下,二面角C-AF-D大小为60°?

查看答案和解析>>

科目: 来源: 题型:解答题

19.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
优分非优分总计
男生
女生
总计50
(ii)据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求成绩为优分人数X的期望和方差.
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图1,长方体ABCD-A′B′C′D′中,AB=BC=2a,AA′=a.
(1)E为棱CC′上任一点,求证:平面ACC′A′⊥平面BDE;
(2)若E为CC′的中点,P为D′C′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示,四边形ABCD中,AD∥BC,AB=CD,AC,BD交于点Q,∠BAC=∠CAD,AP为四边形ABCD外接圆的切线,交BD的延长线于点P.
(1)求证:PQ2=PD•PB;
(2)若AB=3,AP=2,AD=$\frac{4}{3}$,求AQ的长.

查看答案和解析>>

同步练习册答案