相关习题
 0  230799  230807  230813  230817  230823  230825  230829  230835  230837  230843  230849  230853  230855  230859  230865  230867  230873  230877  230879  230883  230885  230889  230891  230893  230894  230895  230897  230898  230899  230901  230903  230907  230909  230913  230915  230919  230925  230927  230933  230937  230939  230943  230949  230955  230957  230963  230967  230969  230975  230979  230985  230993  266669 

科目: 来源: 题型:填空题

6.若cos($\frac{π}{6}$-θ)=$\frac{{\sqrt{3}}}{3}$,则cos($\frac{5π}{6}$+θ)-$\sqrt{3}$cos($\frac{π}{3}$-2θ)=0.

查看答案和解析>>

科目: 来源: 题型:解答题

5.某中学号召学生在今年暑假期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(Ⅰ)求合唱团学生参加活动的人均次数;
(Ⅱ)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知函数 f(x)的导数为 f'(x),且满足关系式 f(x)=x3•$\int_0^2{xdx+{x^2}f'(1)+3x}$,则 f'(2)的值等于-9.

查看答案和解析>>

科目: 来源: 题型:选择题

3.如图,D是△ABC所在平面内一点,且$\overrightarrow{AB}$=2$\overrightarrow{DC}$,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{BD}$=(  )  
A.$\frac{3}{2}$$\overrightarrow{b}$-$\overrightarrow{a}$B.$\overrightarrow{b}$-$\frac{3}{2}$$\overrightarrow{a}$C.$\frac{1}{2}$$\overrightarrow{b}$-$\overrightarrow{a}$D.$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,四边形ABCD是梯形,AD∥BC,∠BAD=90°,DD1⊥面ABCD,DD1∥CC1,AD=4,AB=2,BC=1.
(Ⅰ)求证:BC1∥平面ADD1
(Ⅱ)若DD1=2,求平面AC1D1与平面ADD1所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知A、B两地之间有6条网线并联,这6条网线能通过的信息量分别为1,1,2,2,3,3.现从中任取3条网线,设可通过的信息量为X,当X≥6时,可保证线路信息畅通(通过的信息量X为三条网线上信息量之和),则线路信息畅通的概率为(  )
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{7}{10}$D.$\frac{5}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如茎叶图所示:
根据学校体制标准,成绩不低于76的为优良.
(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;
(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2的直线交双曲线于A,B两点,连结AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,则双曲线的离心率为$\sqrt{5-2\sqrt{2}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知等差数列{an}中,a2=5,a6=17,若从数列{an}中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序构成一个新的数列{bn}.
(1)求数列{bn}的通项公式;
(2)设cn=$\frac{3n}{{{b_n}+1}}$(n∈N*),Tn=c1+c2+…+cn(n∈N*),证明:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a91=-136.

查看答案和解析>>

同步练习册答案