相关习题
 0  230835  230843  230849  230853  230859  230861  230865  230871  230873  230879  230885  230889  230891  230895  230901  230903  230909  230913  230915  230919  230921  230925  230927  230929  230930  230931  230933  230934  230935  230937  230939  230943  230945  230949  230951  230955  230961  230963  230969  230973  230975  230979  230985  230991  230993  230999  231003  231005  231011  231015  231021  231029  266669 

科目: 来源: 题型:解答题

13.已知函数f(x)=|x2-1|
(1)解不等式f(x)≤2+2x;
(2)设a>0,若关于x的不等式f(x)+5≤ax解集非空,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,点E、F分别是正方体ABCD-A1B1C1D1的棱AD、AA1的中点,G是棱CC1上一点.
(Ⅰ)求证:平面A1B1E⊥平面D1FG;
(Ⅱ)若AB=2,CG=2-$\sqrt{3}$,M是棱DD1的中点,点N在线段D1G上,MN∥DC,求二面角D1-FN-M的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,直线AB为⊙O的切线,切点为B,点C、D在圆上,DB=DC,作BE⊥BD交圆于点E
(1)证明:∠CBE=∠ABE;
(2)设⊙O的半径为2,BC=2$\sqrt{3}$,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{lo{g}_{2}(x+1),x>1}\end{array}\right.$且方程[f(x)]2-af(x)+2=0恰有四个不同的实根,则实数a的取值范围是(  )
A.(-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞)B.(2$\sqrt{2}$,3)C.(2,3)D.(2$\sqrt{2}$,4)

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,AB是⊙O的直径,C是⊙O上一点,AC∥BP,BM切⊙O于B,BM交CP于M,且CM=MP.
(1)求证:CP与⊙O相切;
(2)已知CP与AB交于N,AB=2,CN=$\sqrt{3}$,求AC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

8.曲线$y=-\frac{{{{(x-4)}^2}}}{4}$上任意一点为A,点B(2,0)为线段AC的中点.
(Ⅰ)求动点C的轨迹f(x)的方程;
(Ⅱ)过轨迹E的焦点F作直线交轨迹E于M、N两点,在圆x2+y2=1上是否存在一点P,使得PM、PN分别为轨迹E的切线?若存在,求出轨迹E与直线PM、PN所围成的图形的面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为$(3,\frac{π}{2})$,若直线l过点P,且倾斜角为$\frac{π}{6}$,圆C以M为圆心,3为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|•|PB|.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{f(x-1),x>0}\end{array}\right.$,若函数g(x)=f(x)-x-a只有一个零点,则实数a的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,点A、B、D、E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.
(1)证明:$\widehat{DE}$=$\widehat{BD}$;
(2)若DE=4,AD=8,求DF的长.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知正三角形ABC的顶点B,C在平面α内,顶点A在平面α上的射影为A′,若△A′BC为锐角三角形,则二面角A-BC-A′大小的余弦值的取值范围是($\frac{\sqrt{3}}{3}$,1].

查看答案和解析>>

同步练习册答案