相关习题
 0  230898  230906  230912  230916  230922  230924  230928  230934  230936  230942  230948  230952  230954  230958  230964  230966  230972  230976  230978  230982  230984  230988  230990  230992  230993  230994  230996  230997  230998  231000  231002  231006  231008  231012  231014  231018  231024  231026  231032  231036  231038  231042  231048  231054  231056  231062  231066  231068  231074  231078  231084  231092  266669 

科目: 来源: 题型:解答题

9.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=4,AB=4$\sqrt{3}$,∠CDA=120°,点N在线段PB上,且PN=2.
(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,以AB为直径的圆O与以N为圆心,半径为1的圆一个交点为Q,延长AB至点P,过点P作两圆的切线,分别切于M,N两点,已知AB=4.
(1)证明:AN=PN;
(2)求QN的长.

查看答案和解析>>

科目: 来源: 题型:选择题

7.若函数f(x)=xlnx-ax3+$\frac{1}{2}$x2-x存在极值,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,0]C.(-∞,1)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知曲线C的极坐标方程是ρ-4sinθ=0.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l过点M(1,0),倾斜角为$\frac{3π}{4}$.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)设直线l与曲线C交于A、B两点,求|MA|+|MB|.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=-x2+alnx(a∈R).
(Ⅰ)当a=2时,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数g(x)=f(x)-2x+2x2,讨论函数g(x)的单调性;
(Ⅲ)若(Ⅱ)中函数g(x)有两个极值点x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,圆O的直径AB=10,C为圆上一点,BC=6.过C作圆O的切线l,AD⊥l于点D,且交圆O于点E,求DE长.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,已知D点在⊙O直径BC的延长线上,DA切⊙O于A点,DE是∠ADB的平分线,交AC于F点,交AB于E点.
(Ⅰ)求∠AEF的度数;
(Ⅱ)若AB=AD,求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.
(Ⅰ)若PD=8,CD=1,PO=9,求⊙O的半径;
(Ⅱ)若E为⊙O上的一点,$\widehat{AE}=\widehat{AC}$,DE交AB于点F,求证:PF•PO=PA•PB.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(其中t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(4cosθ+3sinθ)-m=0(其中m为常数).
(1)若直线l与曲线C恰好有一个公共点,求实数m的值;
(2)若m=4,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,ABCD是边长为2的菱形,且∠DAB=60°,PC=4,PA=2,E是PA的中点,平面PAC⊥平面ABCD.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案