相关习题
 0  230949  230957  230963  230967  230973  230975  230979  230985  230987  230993  230999  231003  231005  231009  231015  231017  231023  231027  231029  231033  231035  231039  231041  231043  231044  231045  231047  231048  231049  231051  231053  231057  231059  231063  231065  231069  231075  231077  231083  231087  231089  231093  231099  231105  231107  231113  231117  231119  231125  231129  231135  231143  266669 

科目: 来源: 题型:选择题

3.集合M={x|lgx>0},N={x|x2≤4},则M∩N=(  )
A.(1,2)B.[1,2]C.(1,2]D.[1,2)

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,矩形ABCD所在的平面和正方形ADD1A1所在的平面互相垂直,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)当E为AB的中点时,求点E到平面ACD1的距离;
(2)当AE等于何值时,二面角D1-EC-D的大小为$\frac{π}{4}$?

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知f(x)=$\frac{3}{4}{e^{x+\frac{1}{2}}}$,g(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)的图象C在x=-$\frac{1}{2}$处的切线方程是y=$\frac{3}{4}x+\frac{9}{8}$.
(1)若?x1,x2∈(c,d),且x1≠x2,$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$<0成立,求c的最小值,d的最大值;
(2)探究函数h(x)=f(x)-($\frac{3}{4}x+\frac{9}{8}$)在(-∞,2]上零点的个数.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知锐角△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且a,b,c成等差数列,则cosB的取值范围为[$\frac{1}{2}$,$\frac{3}{5}$).

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知a是任意实数,则关于x的不等式(a2-a+2016)x2<(a2-a+2016)2x+3的解为-1<x<3.(用x的不等式表示)

查看答案和解析>>

科目: 来源: 题型:选择题

18.在直角坐标系xOy中,A(-1,0),B(0,0),以AB为边在x轴上边作一个平行四边形,满足tan∠CAB•tan∠DBA=$\frac{1}{2}$,E($\frac{{\sqrt{2}}}{2}$,0),则CE长的取值范围是(  )
A.$(1,1+\frac{{\sqrt{2}}}{2})$B.$(1-\frac{{\sqrt{2}}}{2},1)$C.$(1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2})$D.$(1-\frac{{\sqrt{2}}}{2},1+\frac{{\sqrt{2}}}{2})$

查看答案和解析>>

科目: 来源: 题型:选择题

17.命题“?x0∈R,x02=kx0+b(k,b为常数)”的否定是(  )
A.?x∈R,x2≠kx+b(k,b为常数)B.?x0∈R,x02<kx0+b(k,b为常数)
C.?x∈R,x2≥kx+b(k,b为常数)D.?x0∈R,x02>kx0+b(k,b为常数)

查看答案和解析>>

科目: 来源: 题型:选择题

16.用系统抽样法(按等距离的规则),要从160名学生中抽取一定容量的样本,将160名学生从1~160进行编号,已知抽样号码中最小的两个分别是7,15,则抽样号码的最大值是(  )
A.23B.125C.160D.159

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面 ADEF与平面ABCD垂直,M为ED的中点,如图2.

(1)求证:AM∥平面BEC;
(2)求证:BC⊥平面BDE.

查看答案和解析>>

科目: 来源: 题型:解答题

14.为调查某地人群年龄与高血压的关系,用简单随机抽样方法从该地区年龄在20~60岁的人群中抽取200人测量血压,结果如下:
高血压非高血压总计
年龄20到39岁12c100
年龄40到60岁b52100
总计60a200
(1)计算表中的a、c、b值;是否有99%的把握认为高血压与年龄有关?并说明理由.
(2)现从这60名高血压患者中按年龄采用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求恰好一名患者年龄在20到39岁的概率.
附参考公式及参考数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

同步练习册答案