相关习题
 0  230957  230965  230971  230975  230981  230983  230987  230993  230995  231001  231007  231011  231013  231017  231023  231025  231031  231035  231037  231041  231043  231047  231049  231051  231052  231053  231055  231056  231057  231059  231061  231065  231067  231071  231073  231077  231083  231085  231091  231095  231097  231101  231107  231113  231115  231121  231125  231127  231133  231137  231143  231151  266669 

科目: 来源: 题型:选择题

7.下列关于独立性检验的说法中,错误的是(  )
A.独立性检验依据小概率原理
B.独立性检验原理得到的结论一定正确
C.样本不同,独立性检验的结论可能有差异
D.独立性检验不是判定两类事物是否相关的唯一方法

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,AB为⊙O的直径,∠ABD=90°,线段AD交半圆于点C,过点C作半圆切线与线段BD交于点M,与线段BA延长线交于点F.
(Ⅰ)求证:M为BD的中点;
(Ⅱ)已知AB=4,AC=$\frac{2\sqrt{30}}{5}$,求AF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在极坐标系中,求圆ρ=8sinθ上的点到直线θ=$\frac{π}{3}$(ρ∈R)距离的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人名币储蓄存款(年底余额)如表
年份20112012201320142015
时间代号t12345
储蓄存款y(千亿元)567810
(Ⅰ)求y关于t的回归方程$\widehaty=\widehatbt+\widehata$;
(Ⅱ)用所求回归直线方程预测该地区2016年(t=6)的人民币储蓄存款.
附:回归方程$\widehaty=\widehatbt+\widehata$,$\widehatb=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t\overline y}}}{{\sum_{i=1}^n{t_i^2-n{{\overline t}^2}}}}$,$\widehata=\overline y-\widehatb\overline t$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在直角坐标系xOy中,直线l:x-y=1,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ22sin2θ-2=0,直线l与曲线C相交于P、Q两点.
(1)求曲线C的直角坐标方程;
(2)求△OPQ的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

2.在R上可导的函数f(x)的图象如图所示,则关于x的不等式x•f′(x)>0的解集为(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-2,-1)∪(1,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

1.以直角坐标系xoy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标,曲线C1的极坐标方程是ρ=$\frac{6}{\sqrt{4+5si{n}^{2}θ}}$,曲线C2的参数方程是$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2+2sinθ}\\{\;}\end{array}\right.$(θ为参数)
(1)写出曲线C1,C2的普通方程;
(2)设曲线C1与y轴相交于A,B两点,点P为曲线C2上任一点,求|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

20.复数z=(2-i)×i(i为虚数单位)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,PA为四边形ABCD外接圆的切线,CB的延长线交PA于点P,AC与BD相交于点M,PA∥BD
(1)求证:∠ACB=∠ACD;
(2)若PA=3,PC=6,AM=1,求AB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,且($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=-20.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)求|3$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

同步练习册答案