相关习题
 0  230986  230994  231000  231004  231010  231012  231016  231022  231024  231030  231036  231040  231042  231046  231052  231054  231060  231064  231066  231070  231072  231076  231078  231080  231081  231082  231084  231085  231086  231088  231090  231094  231096  231100  231102  231106  231112  231114  231120  231124  231126  231130  231136  231142  231144  231150  231154  231156  231162  231166  231172  231180  266669 

科目: 来源: 题型:解答题

18.已知圆E的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,取相同单位长度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直线l过原点,且它的倾斜角α=$\frac{3π}{4}$,求l与圆E的交点A的极坐标(点A不是坐标原点);
(2)直线m过线段OA中点M,且直线m交圆E于B、C两点,求||MB|-|MC||的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边长分别为a,b,c,B=45°,b=3.
(Ⅰ)若cosC+$\sqrt{2}$cosA=1,求A和c的值;
(Ⅱ)若$\overrightarrow m$=(2sin$\frac{A}{2}$,-1),$\overrightarrow n$=($\sqrt{3}$cos$\frac{A}{2}$,2sin2$\frac{A}{2}}$),f(A)=$\overrightarrow m$•$\overrightarrow n$,求f(A)的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

16.在边长为1的正方形ABCD中,已知M为线段AD的中点,P为线段AD上的一点,若线段BP=CD+PD,则(  )
A.∠MBA=$\frac{3}{4}$∠PBCB.∠MBA=$\frac{2}{3}$∠PBCC.∠MBA=$\frac{1}{2}$∠PBCD.∠MBA=$\frac{1}{3}$∠PBC

查看答案和解析>>

科目: 来源: 题型:填空题

15.如图,P为⊙O外一点,PA是⊙O的切线,A为切点,割线PBC与⊙O相交于B,C两点,且PC=3PA,D为线段BC的中点,AD的延长线交⊙O于点E.若PB=1,则PA的长为3;AD•DE的值是16.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,已知等腰梯形ABCD为⊙O的内接四边形,AB∥CD,PA=AB=2CD=2,PA⊥平面ABCD,已知E为PA的中点,连接DE.
(1)证明:DE∥平面PBC;
(2)求二面角D-BC-P的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

13.设函数f′(x)是函数f(x)(x∈R)的导函数,若f(x)-f(-x)=2x3,且当x>0时,f′(x)>3x2,则不等式f(x)-f(x-1)>3x2-3x+1的解集为(  )
A.(-∞,2)B.(${\frac{1}{2}$,+∞)C.(-∞,$\frac{1}{2}}$)D.(2,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知线段PD垂直于正方形ABCD所在平面,D为垂足,PD=3,AB=4,连接PA、PB、PC.
(1)求证:平面PBC⊥平面PDC;
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

11.过点A和圆心O的直线交⊙O于B,C两点(AB<AC),AD与⊙O切于点D,DE⊥AC于E,AD=3$\sqrt{5}$,AB=3,则BE的长度为(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B、C,∠APC的平分线分别交AB、AC于点D、E,AC=AP.
(1)证明:∠ADE=∠AED;
(2)证明PC=$\sqrt{3}$PA.

查看答案和解析>>

科目: 来源: 题型:解答题

9.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosα+\sqrt{3}\\ y=2sinα+1\end{array}$(α为参数),曲线C2的极坐标方程为ρ=2cosθ.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)若射线θ=$\frac{π}{6}$(ρ≥0)交曲线C1和C2于A、B(A、B异于原点),求|AB|.

查看答案和解析>>

同步练习册答案