相关习题
 0  231000  231008  231014  231018  231024  231026  231030  231036  231038  231044  231050  231054  231056  231060  231066  231068  231074  231078  231080  231084  231086  231090  231092  231094  231095  231096  231098  231099  231100  231102  231104  231108  231110  231114  231116  231120  231126  231128  231134  231138  231140  231144  231150  231156  231158  231164  231168  231170  231176  231180  231186  231194  266669 

科目: 来源: 题型:填空题

18.已知点A是抛物线y=$\frac{1}{4}$x2的对称轴与准线的交点,点F为该抛物线的焦点,点P在抛物线上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以A,F为焦点的双曲线上,则该双曲线的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知三棱锥D-ABC的四个顶点都在球O的表面上,若AB=3,AC=4,AB⊥AC,DB⊥平面ABC,DB=12,则球O的半径为$\frac{13}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.若将函数f(x)=x6表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,其中a1,a2,…,a6为实数,则a3等于-20.

查看答案和解析>>

科目: 来源: 题型:选择题

15.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(${\frac{1}{2}$)x-1,若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围是(  )
A.(${\sqrt{3}$,0)B.(${\root{3}{4}$,2]C.[${\root{3}{4}$,2)D.[${\root{3}{4}$,2]

查看答案和解析>>

科目: 来源: 题型:解答题

14.某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从高度在80厘米以上以上(含80厘米)的植株中随机抽取2株,求所抽取的2株中至少有一株高度在[90,100]内的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知公差不为0等差数列{an}满足:a1,a2,a7成等比数列,a3=9.
(1)求{an}的通项公式;
(2)若数列{an}的前n项和Sn,求数列{$\frac{{S}_{n}}{n}$}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知抛物线y2=2px(p>0),若定点(2p,1)与直线kx+y+2k+2=0距离的最大值是5,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

11.如图,已知正方形ABCD的边长为1,沿对角线BD折起得到四面体ABCD,如果 四面体ABCD的主视图是顶角为120°的等腰三角形,俯视图为等腰直角三角形,则其侧视图的面积为(  )
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{12}$C.$\frac{{\sqrt{6}}}{6}$D.$\frac{{\sqrt{6}}}{12}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数,当x∈(0,1)时,f(x)=x+a,如果函数f(x)的图象与圆x2+y2=1的交点个数为4,则a的取值范围为(  )
A.{a|-$\sqrt{2}$≤a<-1}B.{a|-$\sqrt{2}$<a≤-1}C.{a|-$\sqrt{2}$<a<-1}D.{a|-$\sqrt{2}$≤a≤-1}

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知X~B(n,p),且E(X)=6,D(X)=$\frac{9}{2}$,则在(${\sqrt{x}$+$\frac{1}{{\root{3}{x}}}}$)n的展开式中,有理项共有5项.

查看答案和解析>>

同步练习册答案