相关习题
 0  231002  231010  231016  231020  231026  231028  231032  231038  231040  231046  231052  231056  231058  231062  231068  231070  231076  231080  231082  231086  231088  231092  231094  231096  231097  231098  231100  231101  231102  231104  231106  231110  231112  231116  231118  231122  231128  231130  231136  231140  231142  231146  231152  231158  231160  231166  231170  231172  231178  231182  231188  231196  266669 

科目: 来源: 题型:填空题

18.设$\overrightarrow{a}$、$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$、$\overrightarrow{b}$夹角大小为$\frac{π}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.设A={x|$\frac{1}{1-x}$≥1},B={x|x2+2x-3>0},则(∁RA)∩B=(  )
A.[0,1)B.(-∞,-3)C.D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

16.一个水平放置的图形的斜二测画法直观图如图所示,其中C=$\frac{π}{2}$,AC=BC=2,那么原平面图形的面积为(  )
A.4$\sqrt{2}$B.$\frac{\sqrt{2}}{4}$C.8$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

15.设0<α<π,且sin$\frac{α}{2}$=$\frac{\sqrt{3}}{3}$,则sinα=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知等差数列{an}满足a1=5,a3=1,前n项和为Sn,则下列说法正确的是(  )
A.{an}的前n项和中S3最大B.{an}是递增数列
C.{an}中存在值为0的项D.S4<S5

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知tanα=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,则tan(α-β)=(  )
A.-1B.$\frac{1}{7}$C.1D.$-\frac{1}{7}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.数列{an}满足a1=$\frac{1}{4}$,an=$\frac{{a}_{n-1}}{(-1)^{n}{a}_{n-1}-2}$(n≥2,n∈N). 令bn=ansin$\frac{(2n-1)π}{2}$
(1)证明:数列{${\frac{1}{a_n}$+(-1)n}为等比数列;
(2)设cn=$\frac{2}{3}$n•(${\frac{1}{b_n}$-1),求数列{cn}的前n项和Sn
(3)数列{bn}的前n项和为Tn.求证:对任意的n∈N*,Tn<$\frac{4}{7}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知不等式x2-3ax+b>0的解集为{x|x<1或x>2}.
(Ⅰ)求 a,b的值;
(Ⅱ)解不等式(x-b)(x-m)<0.

查看答案和解析>>

科目: 来源: 题型:填空题

10.$\overrightarrow a$=(x-1,y),$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,则当x>0,y>0时,$\frac{1}{x}$+$\frac{1}{y}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.等差数列{an}的前n项和记为Sn,若a5=10,S7=49,
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{({3n-2})•{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案