相关习题
 0  231030  231038  231044  231048  231054  231056  231060  231066  231068  231074  231080  231084  231086  231090  231096  231098  231104  231108  231110  231114  231116  231120  231122  231124  231125  231126  231128  231129  231130  231132  231134  231138  231140  231144  231146  231150  231156  231158  231164  231168  231170  231174  231180  231186  231188  231194  231198  231200  231206  231210  231216  231224  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=(1-$\frac{a}{x}$)ex(x>0),其中e为自然对数的底数.
(1)当a=2时,求曲线y=f(x)在(1,f(1))处的切线与坐标轴围成的面积;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数y=f(x)在区间[a,b]的图象如图所示,则其导函数y=f′(x)在该区间(  )
A.先递减再递增B.先递增再递减
C.先递增再递减最后又递增D.先递减再递增最后又递减

查看答案和解析>>

科目: 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C:$\left\{\begin{array}{l}{x=\sqrt{6}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α为参数).以原点O为极点,x轴正半轴为极轴,建立坐标系,直线l的极坐标方程为ρ(cosθ+$\sqrt{3}$sinθ)+4=0,求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目: 来源: 题型:选择题

11.棱长为2的正方体ABCD-A1B1C1D1的所有顶点均在球O的球面上,E,F,G分别为AB,AD,AA1的中点,则平面EFG截球O所得圆的半径为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=acosθ\\ y=bsinθ\end{array}\right.$(a>b>0,θ为参数).在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是经过极点的圆,且圆心C2在过极点且垂直于极轴的直线上.已知曲线C1上的点$A(3\sqrt{3},1)$对应的参数为$θ=\frac{π}{6}$,曲线C2过点$B(2,\frac{π}{6})$.
(Ⅰ)求曲线C1及曲线C2的直角坐标方程;
(Ⅱ)若点P在曲线上C1,求P,C2两点间的距离|PC2|的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)若⊙O的半径为$2\sqrt{3},OA=OM$,求MN的长.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,已知线段AC为⊙O的直径,PA为⊙O的切线,切点为A,B为⊙O上一点,且BC∥PO.
(I)求证:PB为⊙O的切线
(Ⅱ)若⊙O的半径为1,PA=3,求BC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,P为⊙O外的一点,直线PO与⊙O于A、B两点,C为⊙O上一点,CD⊥PO交PO于D,CA平分∠PCD.
(1)证明:PC是⊙O的切线;
(2)若⊙O的直径为4,BC=3AC,求PC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,半径为2的⊙O的直径AB的延长线与弦CD的延长线相交与点P,PE为⊙O的切线,E为切点,$\overrightarrow{BE}$=2$\overrightarrow{BD}$,若PB=2,PD=$\frac{5}{2}$,∠PEB=30°.
(1)求∠PCB的度数;
(2)求CD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.$(t为参数),圆C的方程是x2+y2-2x-4y=0,以原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)设直线l与圆C的两个交点为M,N,求M,N两点的极坐标(ρ≥0,0≤θ<2π),以及△MON的面积.

查看答案和解析>>

同步练习册答案